
105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
1

Solar Tracker Construction Guide

An Illustrated Assembly Manual

The GEARS solar tracking assembly instructions are organized into three (3) sections:

Section One: Information necessary to complete the mechanical assembly of the project as well
as instructions for the placement of the pneumatic components.
Section Two: Detailed Instructions on how to configure and operate the pneumatic components.
Section Three*: Wiring and programming instructions for integrating the Basic Stamp© two axis
controller.

The suggested control system for this project should include a microprocessor fitted with sensors
to track the sun’s position. We recommend two products:
1.) The Parallax Basic Stamp (www.parallax.com)
2.) Machine Science’s (www.machinescience.com) C based control system

The tracking mechanism can be fitted with several different energy transformation systems
including a parabolic reflector (High temperature solar heating device), a flat plate water or air
heater, or a photovoltaic array used to charge the battery that operates the device. The choice of
which renewable energy system to use is left to the instructor and students.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
2

Section One: Mechanical Assembly

Required Tools
Safety Glasses
Phillips Head Screwdriver
Allen Wrench or Hex Key (sizes .050, 1/16, 5/64,
3/32, and 1/8)
Wrench (sizes 3/8 and 9/16)

Wire Strippers and Crimpers
Needle Nose Pliers
Tubing cutter or Shears
Matches or Lighter (To melt the polycord)
Smooth File (Small)

Materials
Structural
Qty.
2 6 x 9 Plate
5 7 Hole Angles
3 13 Hole Angle
1 5 Hole Flat Bar
2 9 Hole Flat Bar
2 180 Degree Fish Plates
1 IM15 Motor Mount
1 Switch Plate
2 Bearing Plates
3 3/16” x 4” axle
2 3/16” dia. x 1-1/2” axle
2 Hex Adapter 3/16” Bore
2 3” Hex Wheel
1 Tire
1 Sine Triangle
1 1/8” dia. x 20” Green Polycord

Electrical
2 ea. Wire Nuts (grey and blue)
4 ¼” Female Quick Disconnects
2 ¼” Male Quick Disconnects
2 0,201” Female Quick Disconnects
8” 16 ga Insulated Wire (blk and red)
1 Motor
1 Electronic Speed Controller
1 SPST Toggle Switch
1 Battery
1 Machine Science/ Parallax Microprocessor Kit
 Sensors as needed

Pneumatics

Hardware
Qty.
55 #10 Flat Washers
53 #10 Lock Washers
7 #10 Fender Washers
5 ½” Flat Washers
38 #10-24 x 3/8” Machine Screws
2 #10-32 x 3/8” Machine Screws (Motor)
36 #10-24 x 1/2” Machine Screws
18 #10-24 Coupling nuts or Standoffs
16 #10-24 Hex Nuts
13 3/16” ID Shaft Collars

Misc.
Qty.
1 1” Length of Surgical Tubing
8 8” zip ties

Qty.
1 3-2 Solenoid Valve
1 3-2 Manual Valve
1 Reservoir
1 Linear Actuator (Cylinder)
1 Regulator with Pressure Gauge
4’ 4mm tubing
1 Pneumatic Bracket

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
3

Assemble the Motor Mount
Module

Step One: Construct the Adjustable Motor
Assembly

Necessary Components

Qty. Description
20 #10 Flat Washers
12 #10 Lock Washers
10 #10-24 x 3/8” Machine Screws
2 #10-32 x 3/8” Machine Screws (Motor)
4 #10-24 Coupling Nuts
1 6 x 9 Plate
2 7 Hole Angles
1 13 Hole Angle
1 6 x 9 plate
1 IM15 Motor Mount
1 Motor
1 1” Length of Surgical Tube (Not Shown)

Step One: Assemble the Motor and Motor Mount

Procedure

1. Attach the motor mount and two 7 hole angles to the motor
using two #10-32 machine screws and lock washers.

2. Use 2 #10-24 x 3/8” machine screws, flat washers, lock
washers and nuts to secure the 7 hole angles to the top-most
motor mount holes. (Note: See illustration on bottom right of
the page)

3. Measure the motor shaft and cut the surgical tubing 1/16”
shorter than the motor shaft.

4. Slide the surgical tubing onto the motor shaft as shown in
the bottom right illustration. Keep the surgical tubing just off
the motor face so it will not rub on the motor face or motor
mount.

Components

4 #10 lock washers
2 #10-24 hex nuts
2 #10 Flat washers
2 #10-24 x 3/8”
 machine screws

2 #10-32 x 1/2”
 machine screws
2 7 hole angles
1 Motor mount
1 Motor
1 ¼” id x .7” surgical
 tubing

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
4

Step Two: Position the Motor Mount Module

Necessary Components

Qty. Description
10 #10 Flat Washers
10 #10 Lock Washers
10 #10-24 x 1/2” Machine Screws
4 #10-24 Coupling Nuts
1 13 Hole Angle
1 6 x 9 Plate
1 Motor Mount Module Pre-assembled
2 #10-24 Hex Nuts

Procedure

1. Attach the 13 hole angle to the motor mount
assembly as shown.

2. Position the #10-24 coupling nuts on the 6 x 9 plate
as shown below. Be certain to count the holes and
position the coupling nuts exactly as shown.

3. Fasten the motor mount module onto the 6 x 9
plate. Do not tighten the mounting bolts at this time.
The motor mount module should slide easily back
and forth along the tops of the coupling nuts. This
will be necessary in order to position the friction
wheel in the next sequence.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
5

Friction Wheel Module

Necessary Components

Qty. Description
1 4” x 3/16” axle
3 3/16” ID Shaft Collars
1 Hex Adapter 3/16” Bore
1 3” Hex Wheel
1 Tire
8 #10 Flat Washers
8 #10 Lock Washers
2 #10 Fender Washers
8 #10-24 x 3/8” PH Machine Screws
6 #10-24 Coupling Nuts
1 Sine Triangle
1 6 x 9 Plate
1 Motor Mount Module (See preceding page)

Step One: Construct the Friction Wheel Mount

Procedure

1. Fasten (2) two #10-24 coupling nuts to the top

side of the 6x9 plate. Use the #10-24 x 3/8” PH
machine screws, lock washers and flat washers
as shown in the illustration on the right.

2. Fasten (4) #10-24 coupling nuts to the bottom
side of the 6x9 plate. Use the #10-24 x 3/8” PH
machine screws, lock washers and flat washers
as shown in the illustration on the right. Note:
Look closely at the position of the coupling nuts
and screw heads. Caution: Be certain to count
the holes and position them exactly as shown in
the illustration.

3. Attach the sine triangle to the (2) two coupling
nuts on the top of the 6x9 plate as shown in the

 illustration below.

Top View

Bottom View

Flip the 6x9 plate over and
it looks like this

Top View

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
6

Step Two: Construct the Friction Wheel and Axle Assembly

Procedure

1. Collect the following parts:
 3pc. 3/16” shaft collars
 4pc. #10 Flat washer
 4pc. #10 – 24 x 3/8” PH Machine Screw
 4pc. #10 Lock Washer
 2pc #10 Fender washer
 1pc. 3/16” x 4” axle
 1pc. 3” Hex wheel
 1pc. Tire
 1pc. 3/16” Bore hex adapter
2. Note the alignment of the parts in the illustration on the top right.
3. Fit the tire to the 3” hex wheel as shown in the illustration on

the right. The tire fits tightly onto the wheel and requires a bit
of work to “Roll” it onto the wheel. Warming the tire in hot
water can help. It also helps to use blunt tools like a spoon
handle or a dulled flat screwdriver to help roll the tire onto
the wheel.

4. Fasten the friction wheel mount to the (4) four coupling nuts
on the bottom of the motor mounting plate as shown. Use (4)
#10-24 x 3/8” PH machine screws, lock washers and flat
washers. Caution: Be certain to count the holes and position
them exactly as shown in the illustration.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
7

5. Assemble the hex adapter, wheel and tire. Capture this assembly by sliding the 3/16” axle up

through the bottom of the motor mount plate and up through the sine triangle as shown below.
It may be necessary to slide the motor mount assembly to the far right position in order to fit
the wheel and tire assembly in place.

6. Fasten the remaining hardware (shaft collars, fender washers, and washer) in the order shown

above. The finished friction wheel assembly is shown below. Note: The top of the axle should
be flush with the top of the 3/16” shaft collar. Attach a battery to the motor leads, the drive
assembly should turn freely.

Isometric View of Completed Friction Wheel Assembly

5/16” Shaft Collar

5/16” Shaft Collar

3/16” Axle

3/16” Fender Washer

3/16” Washer

Loosen screws and slide the
motor assembly back so the
friction wheel is not in contact
with the motor shaft

3/16” Shaft Collar

3/16” Shaft Collar

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
8

Altitude and Azimuth Positioning Module

A solar collector that follows the sun will need to rotate on an imaginary, east, west plane as
well as a plane formed by looking up and down. The amount of rotation from east to west is
measured in angles of “Azimuth” . The azimuth positioning module supports this east to west
rotation. The amount of rotation, up and down is measured in angles of altitude. The altitude
positioning module supports this up-down motion.

Step One: Construct the Azimuth Axis Assembly

Necessary Components

Qty. Description
3-5 #10 Fender Washers
4 #10 Lock Washers
4 #10-24 x 1/2” Machine Screws
4 #10-24 Coupling Nuts
5 ½” Flat Washers
2 3/16” Shaft Collars
1 3/16” dia. x 4” axle
1 3/16” Bore Hex Adapter
1 3” Hex Wheel
1 1/8” dia. x 16” Green Polycord (not shown)

Procedure
1. Collect and layout the parts listed above.
2. Load (5) five ½” washers onto the hex adapter as shown in the

illustration on the right.
3. Slide the 3” hex wheel onto the hex adapter and washers.
4. Slide the 4” axle through the hex adapter bore.
5. Secure the 3” hex wheel onto the hex adapter using a 3/16” fender

washer and a 3/16” shaft collar. The top of the axle should be flush
with the top of the shaft collar. See the illustration below.

Note: It is not necessary to
tighten the hex adapter set
screw onto the axle. The hex
adapter should turn freely on the
axle.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
9

6. Fasten the (4) four coupling nuts to the 3” hex wheel using (4) four #10-

24 x ½” ph machine screws and lock washers as shown.
7. Put (2) two 3/16” fender washers under the hex adapter and slide this

assembly through both of the 6 x 9 plates on the Solar Tracker Module,
as shown. The correct hole is located at the intersection of the 6th column
and sixth row .

8. Secure this assembly to the solar tracking module using a #10 fender
washer and a 3/16” shaft collar. The assembly should turn freely, but not
be too loose. Note: It is not necessary to over tighten set screws, over
tightening will cause the hex key wrench to rotate in the screw socket
and damage both the wrench and the set screw.

Row One,
Column One

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
10

Attach the green polycord belt. Wrap a length of the polycord belt around both the small
pulley on top of the friction wheel axle and the 3” hex wheel on the azimuth assembly to
find the approximate polycord length. We will call this the wrapped length. Since the
polycord stretches, it is necessary to cut the polycord 10% shorter than the wrap length. To
do this measure the wrap length of poly cord, and subtract 10% of that length. Example:
The wrap length equals 15-1/2”. Convert that length to a decimal, 15.5”. 10% of 15.5” is
1.55”. Round this off to 1 decimal place, 1.5”. and subtract 1.5” from the wrap length.
15.5” – 1.5” = 14”. Cut the polycord to 14” and “Weld” the ends together. Instruction on
how to weld the polycord can be found at the end of this document.

Engage the motor and drive wheel by loosening the (4) four motor mount screws and pushing
the motor shaft gently against the drive wheel. Connect the motor leads to a battery and test the
operation of the system. Make the necessary adjustments.

Make certain the
belt runs level

Slide the motor to
make contact with
the friction wheel.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
11

Altitude Positioning Module

The altitude positioning assembly is operated by a basic 5 component pneumatic
system that includes an; air reservoir (energy storage), a 3/2 manual valve, self
relieving regulator, 3/2 solenoid valve, and a linear pneumatic actuator. Refer to
either the pneumatic assembly instruction included in this document.

The pneumatic system provides 2 altitude positions, winter and summer. Because the
sun is lower on the horizon in the winter months, the attitude angle is greater with
respect to the ground plane. In the summer months the sun transits higher across the sky
and the altitude angle is less with respect to the ground plane.

Construct the Altitude Positioning Assembly

Necessary Components

Qty. Description
23 #10 Flat Washers
21 #10 Lock Washers
11 #10-24 Hex Nuts
21 #10-24 x 1/2” Machine
Screws
2 #10-24 Coupling Nuts
8 3/16” Shaft Collars
2 3/16” dia. x 1-1/2” axle
1 3/16” dia. x 4” axle
3 7 Hole Angles
2 13 Hole Angles
2 Bearing Plates
2 9 Hole Flat Bar
1 5 Hole Flat Bar
2 180 Degree Fish Plates
1 Pneumatic Bracket
1 Linear Actuator (Pneumatic)

Summer

Winter

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
12

Procedure

Step One: Make the Altitude Positioning Assembly Base
The base sits atop the 4 coupling nuts on the 3” hex wheel.

1. Lay out the following components from the list on the

preceding page.

 Qty Description
8 #10-24 x ½” ph machine screws
9 #10 Flat washers
6 #10-24 Hex nuts
2 #10-24 Coupling nuts
8 #10 Lock washers
2 7 Hole angles

2 9 Hole flat bar
2 180 degree fish plates

2. Fasten the 180 degree fish plate to the 9 hole angle using
 a machine screw, flat washer, lock washer and hex nut in
 the order shown on the right.

3. Fasten the #10-24 coupling nut to the fish plate. Use a flat
 washer on both sides of the fish plate. Always include a
 lock washer.

4. Attach the 9 hole flat bar to the 7 hole angle as shown below

and right. Be certain to count the holes and position the flat
bar exactly as shown. The finished assembly is shown below.

5. Repeat steps 1 through 4 and assemble the other side of

the base. Remember that these two sides are mirror
opposites, assemble them accordingly.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
13

Step Two: Assemble the Pneumatic Actuator Mount
The mount sits atop the 2 #10-24 coupling nuts on the base (see bottom of preceding page.

1 Lay out the following components.

 Qty Description

2 #10-24 x ½” ph machine screws
4 #10 Flat washers
2 #10-24 Hex nuts
2 #10 Lock washers
1 7 Hole angles

 1 Pneumatic bracket

2. Fasten the pneumatic bracket to the center of the 7 hole
 angle. Use flat washers on both sides of the 7 hole angle. Do
 not fully tighten the fasteners at this time. It may be necessary
 to slide them side to side in order to position the pneumatic
 actuator.

3. Fasten the completed pneumatic bracket to the base as shown
 below.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
14

Step Three : Attach the Pneumatic Actuator to the Mounting Bracket and Base

Necessary Components

1 Pneumatic actuator
1 3/8” Hex nut
1 Clevis
1 3/16” Diameter x 1” axle
2 3/16” Shaft Collars

Fasten the pneumatic actuator to the pneumatic
bracket using the 3/8” hex nut.
Thread the clevis onto the rod end and assemble the
axle and shaft collars. Note: do not fully tighten the
shaft collar set screws at this time. It will be necessary
to remove the axle at a later time in order to mount
the altitude module. The completed pneumatic
actuator assembly is shown on the left.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
15

Step Four : Assemble the Solar Panel Mounting Bracket

The solar panel mounting bracket supports the solar panel.

Necessary Components

Qty Description
4 #10-24 x ½” ph machine screws
4 #10 Flat washers
4 #10-24 Hex nuts
4 #10 Lock washers
2 13 Hole angles
2 Shaft Plates (Green)
1 5 Hole flat bar (yellow)
1 3/16” Diameter x 1” axle
1 3/16” Diameter x 4” axle
4 3/16” Shaft collars

Pass the 4” axle through the second hole up from the end
of the 13 hole angle. Refer to the larger red arrow in the
illustration on the left.

Sandwich the 5 hole flat bar (yellow) in between the two
angles and use the 1” axle and two shaft collars to fasten
the flat bar in place as shown on the left.

Fasten the shaft plates (Green) to the 13 hole angles.
Mount the shaft plates to the holes on each end of the 13
hole angles. Refer to the arrows in the illustration on the
left.

The completed solar
panel mounting bracket is
shown on the right.

Rear (isometric) view of
the completed assembly

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
16

Step Five: Integrate the Pneumatic Actuator Mount and the Solar Panel Mounting
Bracket Assemblies

The assembled altitude positioning module
is shown on the right. This unit allows for
two angle positions (measured from the
horizontal).

One angle can be set low for summer sun
positions, and one angle can be set high to
accommodate winter angle positions.

The two angles can be adjusted by
positioning the 5 hole flat plate linkage
either higher or lower on the solar panel
mounting bracket.

Necessary Components

Qty Description
4 #10-24 x ½” ph machine screws
4 #10 Flat washers
4 #10 Lock washers

Fasten the solar panel mounting bracket
to the *10-24 coupling nuts on the 3”
hex wheel (orange). This is done by
passing the ph machine screws through
the slots in the 7 hole angles. Position
the washers under the screw heads and
above the slots.

The complete assembly is shown on the
following page.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
17

Isometric view of the
integrated assembly

Right side view of the
integrated assembly

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
18

Step Six: Install the Pneumatic Components

Necessary Components

Qty Description

1 Regulator
1 Pneumatic Reservoir
1 3/2 Manual Valve
1 3/2 Solenoid Valve
24” 4mm tubing (Not Shown)

Note: Take the time to
become familiar with the
purpose and function of each
of the pneumatic
components. Assemble and
operate a “Bench top”
working pneumatic system

before attempting to integrate the components into a
working solar tracker.

Mounting the Pneumatic Components

The Reservoir
The reservoir is the equivalent of a battery. The energy used
by the cylinder to operate the altitude positioning module, is
stored as compressed air in the reservoir. You can “Feel” this
“captured” energy when you pressurize the cylinder using a
bicycle pump.

Mount the reservoir
lengthwise along
the 13 hole angle
plate that runs along
the back of the solar
tracker assembly.
Secure it in place
using zip ties,
elastic or other
readily available
means. See the
illustration on the
left.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
19

The 3/2 Manual Valve (Relieving)
The 3/2 manual valve is attached to the reservoir using with a length of
4mm tubing. Note the air flow direction arrow embossed on the valve
body. These arrows show the direction of air through the valve.
Attaching the valve in reverse will cause the reservoir to discharge.

This valve acts like a pneumatic “on, off” switch with 2 different
positions and 3 ports or holes, for the air to pass through. When the
valve is turned on, the system is pressurized and ready to operate.
When the valve is off, the compressed air contained in the pneumatic
components downstream of the 3/2 manual valve are depressurized. (The system is vented
through the valve to atmosphere) This ensures the downstream components are safe and not
energized. Mount the 3/2 manual valve using 2 #4-40 x 1” machine screws, nuts and
washers. Place it close to the reservoir and in a position where the valve can be conveniently
operated.

The 3/2 Manual Valve (Relieving)
Located near the reservoir. Remember to check the
air flow direction arrow embossed on the valve body.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
20

The Self Relieving Regulator and Gauge
The regulator is connected to the 3/2 manual valve. The
regulator is used to maintain a constant working pressure in
the system. It is set to maintain a fixed pressure and will
continue to do so until the pressure in the reservoir drops
below the working pressure in the system. The reservoir
will provide a finite amount of operating cycles with a
given reservoir pressure. The number of possible cycles for
a given reservoir pressure can be approximately determined
using Boyle’s law.

The regulator serves as an important safety device. If the
pressure in the system increases beyond the regulator set
point, the regulator will vent the excess pressure. It is
unwise to operate a pneumatic system without using a self relieving regulator with a
gauge.

Mount the regulator near the 3/2 valve using two (2) #6-32 x ¾” machine screws nuts and
washers.

The self relieving regulator with gauge mounted
near the 3/2 manual valve. Remember; the correct
air flow direction through the regulator is marked
with an arrow embossed on the back of the
regulator casing.

Top View of the Solar Tracker Module

The 3/2 Solenoid Valve. The air
inlet is marked with an embossed
letter “P” or the number “1”.

The single acting pneumatic cylinder
or “Linear actuator” with a flow valve
attached.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
21

The 3/2 Solenoid Valve
The 3/2 solenoid works like the 3/2 manual valve; only it is operated
electrically. This convenient feature allows the valve to be operated
remotely or autonomously.

The Single Acting
Pneumatic Cylinder
This is the “Work horse” of
the pneumatic system. If the
reservoir is analogous to a
battery, and the 3/2 valves
are like switches, then the pneumatic cylinder can be
though of as being like the motor in this system. The
pneumatic cylinder is also referred to as a linear
actuator since it applies force in a straight line or
linear direction.

The term single acting is used to describe a linear

actuator that applies a working force in one direction. A spring is used to return the cylinder
rod to the starting position. A double acting cylinder can be used to supply force in two
directions. A double acting cylinder requires an different solenoid valve.

The pneumatic cylinder sold with the GEARS kit also includes a flow valve. The flow valve is
also referred to as a speed valve. A needle valve, turned by a thumb screw is used to regulate
the flow of air into the cylinder. The rate of air flowing into the cylinder determines the speed
of the rod and piston. The flow valve can be set so that the cylinder rod extends very slowly.
The thumb screw can be set using a locking collar.

Plumbing and Testing the Pneumatic System

After the pneumatic components have been installed complete the pneumatic (series) circuit by
connecting them with the 4mm tubing. The order of connection is as follow: Reservoir > 3/2
manual valve > self relieving regulator > 3/2 solenoid valve > pneumatic cylinder with speed
valve. Remember that each of these pneumatic components has a input and an output port, and
if they are reversed, the system will not work.

When the system components have been properly connected and checked, pressurize the
system with a bicycle pump. A bicycle pump is recommended for two important reasons
1.) It allows slow and controlled pressurization so that any leaks or connection errors can be
discovered before the pressure rises too high.
2.) The person pressurizing the system can “feel” the work or energy being put into the system.

Flow valve

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
22

Step Seven: Assemble and Attach the Single Pole Single Throw Switch

Necessary Components

Qty Description

1 SPST Toggle switch
4 #10-24 x 3/8”ph machine
 screws.
4 #10 lock washers
2 #10-24 Coupling nuts
1 Switch plate

Procedure

Fasten the switch plate to the solar
tracker module in a position that will
not interfere with the (azimuth)
rotation of the solar tracker.

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com

Copyright GEARS Educational Systems 2007
23

Adding Controls

The solar tracker requires two “Channels” of control; One channel operates the motor and controls the
azimuth axis, the second channel operates the pneumatic system and controls the altitude axis. Azimuth
control requires continuous positioning through approximately 180 degrees of rotation (Actual rotation
angles depend on latitude and time of year.The altitude control requires only two positions optimized
for either summer/winter or morning/noon/evening sun angles.

Radio control

For testing purposes it is possible to control both channels using an RC radio. For real world solar
tracking experiments, it is necessary to automate the operation of the solar tracker. This is best
accomplished using a microprocessor.

Microprocessor Control
Any number of control strategies can be developed. The simplest solution would be a “Timed”
operation in which the control system is positioned each day facing easterly, and the control system is
turned on and allowed to slowly follow the sun across the sky. This strategy may work, but it would
provide limited applicability, and it would be prone to tracking errors caused by difficulties in
synchronizing the tracker rotation to precisely follow the sun.

A better strategy would be to provide feedback through a system of sensors programmed to search for
an optimum position for the tracker. There are several ways of doing this, but they can be readily
accomplished using an number of available microprocessor systems. We recommend either of these two
great educational microprocessor systems:

Parallax Basic Stamps and Propeller

The BASIC Stamp module is a microcontroller developed by Parallax, Inc. which is easily
programmed using a form of the BASIC programming language called PBASIC. It is called a “Stamp”
simply because it is close to the size of an average postage stamp, except for the BS2p40 which is much
longer due to it's additional I/O pins.

The Propeller Chip makes it easy to rapidly develop embedded applications. Its eight processors
(cogs) can operate simultaneously, either independently or cooperatively, sharing common resources
through a central hub. The developer has full control over how and when each cog is employed; there is
no compiler-driven or operating system-driven splitting of tasks among multiple cogs. A shared system
clock keeps each cog on the same time reference, allowing for true deterministic timing and
synchronization. Two programming languages are available: the easy-to-learn high-level Spin, and
Propeller Assembly which can execute at up to 160 MIPS (20 MIPS per cog).

Machine Science
Machine Science’s C based microprocessor kits and resources are used in a wide range of educational
programs—running after-school programs for middle school students, prototyping commercial products
in undergraduate engineering labs, fielding entries in open-architecture robotics competitions, and
developing innovative technology projects at home, to name just a few. To learn more about these and
other applications, please click on the Machine Science header at the top of this paragraph.

 1

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Section Two: Configure and Operate Pneumatic Components

I
N
T
E
G
R
A
T
I
O
N

SYSTEMS
-

A
F
E
T
YTime

cetanDisSpeed =

Fig. 1-1

 2

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Basic Pneumatic System Components

Regulator (Self relieving)
Regulators control
circuit pressure or force.
Pressure is a measure of
force acting over a
specific area
P = force/area.
These devices are fitted
with mechanical
components that react to
changes in the
downstream air
pressure. The regulator
attempts to
automatically maintain a
constant (preset)
pressure within a
pneumatic circuit as long
as the supply (reservoir)
pressure is greater than
the required circuit
pressure. The reading on the regulator-mounted gauge indicates the regulated or circuit
pressure

Note: Always use a regulator and a pressure gauge to monitor and control pneumatic system pressure. Every
pneumatic system should have a pressure relief valve to prevent over pressure conditions. A self relieving
regulator is designed to vent overpressure conditions on the downstream side of the pneumatic circuit. The
regulator used in the GEARS-IDS™ kit has a self relieving feature.

Speed or Flow Valves
Flow valves control the speed of air flow into or out of a
pneumatic circuit or component. Flow is a measure of
the volume of air moving through the circuit or
component over a period of time
(Flow = volume/time). Flow control is adjusted using
the needle valve. Screwing the needle valve outward
increases the flow rate, the higher the flow rate, the faster
the component will operate.

Note: Air enters and leaves the single acting cylinder through
the flow control valve. Airflow is regulated in one direction
only. The free flowing air direction is shown using a large
arrow embossed on the valve. The regulated air flow direction
is shown with a small arrow.Airflow control is best
accomplished by regulating the flow of air out of a circuit or
component. Note: Controlling air flow out of the cylinder is
the preferred choice for accurate and smooth control of slower
moving actuators. ”When in doubt, regulate out!”.

Figure 1.3

Figure 1.2

Regulator Controls Pressure or Force

 3

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Single Acting Pneumatic Cylinder or Linear Actuator

These devices are used to apply
straight line (linear) pushing or pulling
forces. Linear actuators are available
in thousands of different
configurations. These cylinders are
fitted with pistons of various diameters
and strokes of various lengths. They
are most commonly specified as single
acting (powered in one direction) or
double acting (powered in both
directions). Single acting spring return
cylinders are more economical with
respect to air consumption. The
pneumatic cylinder supplied in the
GEARS-IDS Invention and Design
System is a single acting, spring return
cylinder. (see Figure 1.4 and 1.5)

The pneumatic cylinder used in the GEARS-IDS™ kit has a bore (Interior diameter) of 16
millimeters or 0.629”. Since 5/8” = 0.625, this cylinder can also be referred to as a 5/8” bore
cylinder for computational purposes. When pressure is applied to the piston, the cylinder rod extends
outward 25.4 millimeters or 1.0”. Important values to consider when designing or evaluating

pneumatic system performance
are the surface area of the piston
and the interior volume of the
cylinder when the piston rod is
fully extended. The interior
volume of the cylinder is
determined by calculating the
surface area of the piston and
multiplying the area of the piston
by the length of the stroke.

Determine the Surface area of
the piston and the interior
volume of the cylinder using the
following formula:

RArea 2∗= π

cylinderLengthVolume R ∗∗= 2π

Notebook Exercise: Draw a sketch of the GEARS-IDS™ cylinder. Include all the dimensions and
calculations necessary to correctly determine the interior volume of the cylinder.

Fig. 1.4

Single Acting Cylinder

Flow Control Valve

Return Spring

Fig. 1.4

Fig. 1.5

 4

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

3-2 NC (Normally closed) Solenoid Valve

Solenoid valves are electrically operated valves that control the direction and flow of pressurized air
to and from pneumatic actuators or circuits. Solenoid valves can be either mono-stable, (they spring
return to a default condition
either on or off) or Bi-stable,
(having no preferred or default
condition thus remaining
where it was last positioned
either on or off) Pneumatic
valves can be operated by
hand, (mechanical) electrically
(solenoid) or air (piloted)
operated. The GEARS-IDS™
kit includes a 3 port, 2 position
electrically operated solenoid
valve.

The GEARS-IDS™ 3-2
pneumatic solenoid valve
is described using 2 numbers.
Example; The solenoid valve
included in the GEARS-IDS™
kit (pictured in fig 1.6) is referred to as a 3-2 solenoid valve. This means the valve has 3 ports (P1,
A2 and E) and 2 possible conditions (Passing or not passing) and it is electrically operated
(Solenoid).

Ports and Positions of a 3-2 Valve
The first number 3, refers to the number of ports or holes through which air moves into or out of the
valve and the 2 refers to the number of valve positions or conditions.

Examine the valve closely. You will find 3 holes or ports in the base of the valve body. They are
usually labeled as P1, A2 and E. The port labeled P1 is the pressure or inlet port. P1 connects to the
pressure supply. The A2 port supplies pressurized air from P1 to an actuator or a circuit and in turn,
allows air to pass from an actuator or a circuit to the E or exhaust port. The E port is open to the
atmosphere.

The 3-2 valve has only 2 possible valve positions or conditions; The valve can either be passing air
from P1 to an actuator or circuit through A2 (the open condition) or, not passing air from P1 but
rather passing Air from A2 to the E (exhaust) port (the closed condition).

Position One (Default)
When the solenoid’s electrical circuit is not energized (default condition), pressurized air cannot pass
from the P1 port, through the valve to the actuator or circuit. The air pathway that exits in this
(default) condition, connects the A2 port with the E (Exhaust) port and blocks the P1 port. In this
condition air can only move from the actuator, through the A2 port to the E (Exhaust) port. The E
port provides a means for air to exhaust to the atmosphere.(See figure 1.7)

Fig 1.5

P1

A2

E

Fig. 1.6

 5

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Figures 1.7 and 1-8 are pictorial
representation of a 3-2 solenoid
valve. Figure 1-7a is a schematic or
symbolic representations of the same
valve.

Position Two (Energized)
(See figure 1.8)

When the solenoid is energized a
valve opens creating a pathway or
circuit from P1 to A2. In this
condition a source of pressurized air
can be directed to an actuator or other
pneumatic circuit.

When the solenoid is de-energized,
the valve reverts to the default
(Normally closed) position and the
pressurized air in the cylinder is
directed out to the atmosphere
through the exhaust valve. (Fig. 1-7)

E P1

A2 A2

P1 E

Normally Closed Position

Fig. 1.7

Air From
Actuator

To
Atmosphere

P1
From supply

reservoir
E

A2

Fig 1-8

 6

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Valve symbols can be confusing. It may prove helpful to review the pneumatic schematics slide
show included with this text.

Completed 3-2 Solenoid Valve Symbol

Anatomy of a 3-2 Solenoid Valve Symbol

Fig. 1-17

 7

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Air Reservoir

Note: Significant amounts of energy can
be stored in pressurized air containers.
For this reason you should always wear
safety glasses when working with
pressurized air systems. In order to
prevent over pressurization, use ONLY
bicycle pumps to pressurize the air
storage containers used with the
GEARS-IDS™ pneumatic components.
Do not exceed 100 psi.

The air reservoir stores the pressurized air
used to operate the pneumatic circuit
components. The air reservoir acts like a pneumatic battery. Using an
understanding of density, and volume, a pair of dial calipers, and some
basic CAD skills, it is possible to closely approximate the interior volume
of the pneumatic reservoir. Note: the reservoir cannot be dismantled.

National Pipe Thread (NPT) refers to a U.S. standard for tapered (NPT) threads used to join pipes
and fittings.

Notebook Exercise: Draw a sketch of the GEARS-IDS™ storage reservoir. Include all the
outside dimensions. This data is necessary to determine the interior volume of the reservoir.

Note: The valve is shown in the off
position. The (blue) hand knob is on
when it is turned to align with the
flow of air.

3-2 Hand Valve

The 3-2 hand valve performs exactly like
the 3-2 solenoid. This valve is manually
(hand) operated and used as an on/off valve
for the entire circuit. A 3-2 valve is an
essential safety component, because when
the valve is closed, the circuit pressure is
automatically vented. Automatic venting of
the circuit pressure when the air supply is
turned off renders the pneumatic circuit
safe.

Fig. 1.9

Fig. 1.10

The E port or exhaust port is a small hole in the underside of the valve.

 8

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

The GEARS-IDS™ Basic Pneumatic Circuit

Figure 1.11 shows the correct layout and order of components used to make a working pneumatic
circuit.

Note: The solenoid valve is actuated through a connection to the PWM switching channel on the
GEARS-IDS™ 2 channel speed controller (Not shown).

It is important to observe correct placement of air input and output lines. The 3-2 hand valve,
regulator and 3-2 solenoid valve must be plumbed correctly with respect to air input and output
lines. Failure to observe the directional arrows or port designations will prevent the circuit from
performing correctly.

Directions on how to assemble the working pneumatic circuit shown in figure 1-11 are available by
clicking on the picture, or by opening the Identify and Assemble Pneumatic Circuits activity sheet.

Fig. 1-11

 9

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Pneumatic Schematics
Using Symbols to Design Pneumatic Circuits

Schematics are created using universally accepted diagrams, drawings or symbols to represent
elements of a system. Engineers and technical trade’s people use symbols to communicate how
differing system components can be arranged and integrated.

Symbols and schematics diagrams are a form of “Picture shorthand” used in nearly all technical and
engineering fields. Some fields that make use of specialized symbol libraries include electrical,
electronic, architectural, pneumatic, piping, and welding to name a few.

Learning to read and use symbols to create schematic representations of pneumatic circuits,
provides an opportunity to develop an engineering skill.

The following symbols represent the basic pneumatic circuit components found in the GEARS-
IDS™ kit. These symbols plus a few others, can be used to construct schematics of a wide variety
of pneumatic circuits. Learn to recognize and use these symbols to evaluate and describe pneumatic
circuit designs.

Pressure Regulator
Adjustable and self relieving

Pressure Regulator (symbol)
Adjustable and self-relieving

Read the Symbol
The arrow through the spring at the top
of the regulator symbol is indicates
adjustable regulator control.

The double arrow through the center of
the symbol indicates self-relieving
capabilities.

Safety and Self-relieving
A self relieving feature provides
additional safety because of the added
capability of managing under and over
pressure conditions downstream of the
regulator.

If an overpressure condition is created
downstream of the regulator, it will
vent the circuit and release the
overpressure to the atmosphere.

Fig. 1-12

 10

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

3-2 Manual Valve

Storage Reservoir
The storage reservoir contains a finite volume
of pressurized air. The reservoir has two ports;
The inlet port is fitted with a one way fill valve
called a Schrader valve and the outlet port is
fitted with a one touch fitting, used to connect
the reservoir to any pneumatic circuit.

Storage Reservoir
symbol

The small rectangle on the end of
the valve symbol indicates
manual valve operation.

Read the Symbol
The valve symbol is comprised of two
boxes denoting two conditions; Passing
(left box) and not passing (right box).

Note: There is always a path for air to flow
either to or from the A port. This allows for
the A port to be pressurized or exhausted to
the atmosphere

The E port is a small opening in the
underbody of the 3-2 manual valve.
This port vents circuit or component
air to the atmosphere, allowing the
downstream components to be safely
depressurized when the circuit is
turned off.

E

A

P

Fig. 1-13

Fig. 1-14

 11

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Single Acting Cylinder
Normally retracted Note the Internal Return Spring

Inlet Port

P E

Exhaust Port

Flow valve is not shown in the symbol

Speed Controller Valves
The speed or flow control valve pictured on the left,
regulates the rate at which pressurized air moves from the
outlet (out) port to the inlet (in) port. This is
accomplished by screwing the needle valve in to slow the
flow or out to allow more air to flow past the needle
valve. The valve contains a secondary path or circuit that
allows air to flow freely and unrestricted from the inlet
(in) port to the outlet (out) port

Fig. 1-15

Fig. 1-16

 12

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Figures 1-18 (above) and 1-19 (on the following page) are similar circuits.

Figure 1-19 is a schematic representation of the pneumatic circuit pictured in figure 1-18.

The schematic illustration on the following page, is constructed using symbols that graphically
illustrate the form and function of the pneumatic components.

Fig. 1-18

 13

105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com
Copyright GEARS Educational Systems 2005

Fig. 1-19

Gears Solar Tracker with the BASIC Stamp
Student Guide

DRAFT 031

DISCLAIMER OF LIABILITY
Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any legal
theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or any costs of recovering,
reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any personal damage,
including that to life and health, resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no
matter how life-threatening it may be.

COPYRIGHTS AND TRADEMARKS
This documentation is Copyright 2008 by Parallax, Inc. By downloading or obtaining a printed copy of this documentation or software you agree
that it is to be used exclusively with Parallax microcontroller products. Duplication in whole or in part for educational use is permitted when
used exclusively with Parallax microcontroller and GEARS products, provided that the student is charged no more than the cost of duplication.
Any other uses are not permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by Parallax, Inc.

Used with permission by GEARS Educational Systems LLC.

BASIC Stamp is a registered trademark of Parallax, Inc. If you decide to use the name BASIC Stamp on your web page or in printed material,
you must state that "BASIC Stamp is a registered trademark of Parallax, Inc." Other brand and product names are trademarks or registered
trademarks of their respective holders.

TABLE OF CONTENTS

Chapter #1: Limit and Light Sensing Circuits ..3
ACTIVITY #1: Building and Testing Prototype Limit Switches ... 3
ACTIVITY #2: Detecting Light Level with an LED .. 5
ACTIVITY #3: Building and Testing Light Direction Sensor ... 8

Chapter #2: Motor and Piston Control ..14
ACTIVITY #1: Tracker Motor Control ... 14
ACTIVITY #2: Tracker Piston Control... 18
ACTIVITY #3: Terminal Controlled Solar Tracker .. 21

Chapter #3: Tracking with Sensors...25
ACTIVITY #1: Horizontal Tracking ... 25
ACTIVITY #2: Documenting the Code.. 28
ACTIVITY #3: Limit Switches for Horizontal Tracking .. 29
ACTIVITY #4: Vertical Tracking.. 31
ACTIVITY #5: All Together Now... 34

Appendix A: Indoor Light Tracking App Summary ...39

Chapter #1: Limit and Light Sensing Circuits Page 3

Chapter #1: Limit and Light Sensing Circuits

There are two types of sensing circuits you will need to make the Solar Tracker follow the sun. The first is a
simple safety precaution: limit switches to make sure the Solar Tracker doesn’t turn too far in either direction.
This is important during prototyping and testing because if it does turn too far, it could damage its wiring or
pneumatic tubing. The second circuit is the light direction detection circuit. In this chapter you will build and
test the circuit and write PBASIC code that gets information from it. In later chapters, you will use the light
direction measurements to decide when and how far to adjust the Solar Tracker’s position.

Just getting started? New to electronics or programming? Try out the BASIC Stamp
Activity Kit from www.parallax.com. With its What’s a Microcontroller tutorial book, Basic
Stamp HomeWork Board and Electronic parts, it’s got everything you’ll need to get started.
The What’s a Microcontroller? tutorial is a collection of 40 activities. Each activity is just a
few pages, and features a lesson in electronics or programming, or sometimes both. Once
you’ve finished What’s a Microcontroller?, you will have learned the basics and will be able
to approach this material with confidence.

ACTIVITY #1: BUILDING AND TESTING PROTOTYPE LIMIT SWITCHES
You will need to mount limit switches that the Solar Tracker platform bumps into before it reaches the limits
of its range of motion. This activity uses normally-open pushbuttons to emulate the function of limit switches.
They are electrically the same; the main difference is mechanical. The pushbuttons will be sitting on the PCB
and they have to be manually pressed when you want to halt rotation, whereas the mechanical limit switches
will be mounted so that the Solar Tracker’s rotating platform bumps into the switch and presses it before it
rotates too far.

Parts List

A Board of Education with BASIC Stamp 2 connected to your PC running the BASIC Stamp Editor
(2) Pushbuttons – normally open
(2) Resistors – 10 kΩ (brown-black-orange)
(2) Resistors – 220 Ω (red-red-brown)

Schematic

√ Build the circuit shown in Figure 1-1.

Figure 1-1 Circuit for Limit Switch Prototype with Pushbuttons

West East
West East

Page 4 Gears Solar Tracker with the BASIC Stamp

Testing the Pushbuttons

The next example program will display the states of the two pushbuttons. A couple of examples are shown in
Figure 1-2. On the left, no buttons are pressed, so both I/O pins receive 5 V, and so their I/O pin aliases
(SWITCH_WEST and SWITCH_EAST) return 1. On the right side of Figure 1-2, the east limit switch was pressed,
so the east I/O pin input alias SWITCH_EAST changed to zero. Even if you know this code and circuit inside out
already, it is still important to test it so that you can make sure your pushbuttons are wired correctly.
Otherwise, you run the risk of having the Solar Tracker’s platform over- rotate and potentially start yanking on
the electrical and pneumatic connections.

Figure 1-2 Limit Switch Display

No buttons pressed East button pressed

Example Program: Test Pushbuttons.bs2

This example program displays the states of the west and east pushbuttons.

√ Run the program.
√ Verify that the west pushbutton circuit (connected to P7) returns a 0 when pressed and a 1 when not

pressed.
√ Repeat for the east pushbutton circuit (connected to P6).

' Test Pushbuttons.bs2
' Test prototypes for east and west limit switches.

' {$STAMP BS2}
' {$PBASIC 2.5}

SWITCH_WEST PIN 7
SWITCH_EAST PIN 6

PAUSE 1000

DO

 DEBUG HOME, "Limits", CR, "West East", CR
 DEBUG CRSRX, 1, BIN1 SWITCH_WEST, CRSRX, 8, BIN1 SWITCH_EAST
 PAUSE 50

LOOP

Chapter #1: Limit and Light Sensing Circuits Page 5

ACTIVITY #2: DETECTING LIGHT LEVEL WITH AN LED
The LED circuit on the left of Figure 1-3 can be used to emit light. When current passes through the circuit,
the LED emits light. The circuit on the right can be used to measure light. When light strikes the silicon
inside the LED, it conducts current. Unlike LEDs, photodiodes are devices specifically designed to collect
light (instead of emit it). Although LED’s are not specifically designed for this type of application, you will
soon see that the BASIC Stamp can be used to make them very sensitive light detectors.

Figure 1-3 Light Emitter and Detector Schematics

Light emitter Light detector

For more information on light detection with a photodiode, download Applied Sensors
from www.parallax.com, and consult Chapter 4. Unlike the detection circuit in Applied
Sensors, the detection circuit here does not have a capacitor. It instead relies on a
capacitance inherent to all diodes, called junction capacitance, to store charge. This is the
capacitance of the junction between silicon with two different impurities inside the LED. As
current crosses this junction in an LED, the electrons emit light. If light strikes the silicon, it
forces electrons across the junction, creating current.

Emitting Light vs. Measuring Light

Take a close look at Figure 1-3. What’s the difference between the LED in the two circuits? Notice that its
polarity has been reversed. Use Figure 1-4 as a reference when building LED circuit’s from schematic.

Figure 1-4 LED Cathode and Anode

Light Emitter Test

This quick tests verifies that your LED is good, and it also demonstrates the LED as a “light emitting diode”.

Parts List

(1) LED – yellow
(1) Resistor – 220 Ω (red-red-brown)
(1) Jumper wire - black

Page 6 Gears Solar Tracker with the BASIC Stamp

LED Light Emitter Circuit

Figure 1-5 shows an LED emitter test circuit. Even if you are already familiar with this circuit, it’s still a good
idea to build and test it just to make sure your LED works.

Figure 1-5 Light Emitter Schematic and Wiring Diagram

Example Program: Test LED Light Emitter.bs2

This simple example program just turns the LED light on/off about 5 times per second.

√ Load the program and verify that the LED emits light and then turns off at about 5 times per second.

' Test LED Light Emitter.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

DO

 HIGH 11
 PAUSE 100
 LOW 11
 PAUSE 100

LOOP

Light Measurements Test

Next, let’s rewire the LED circuit for light detection.

Parts List

(1) LED – yellow
(1) Resistor – 10 kΩ (brown-black-orange)
(1) Jumper wire - black

LED Light Detector Circuit

Figure 1-6 shows an LED light detection test circuit. Notice that the anode and cathode terminals have been
swapped, so you’ll need to unplug your LED, give it a half turn, and plug it back in.

Chapter #1: Limit and Light Sensing Circuits Page 7

Figure 1-6 Light Detector Schematic and Wiring Diagram

Example Program: Test LED Light Detector.bs2

This example program applies a HIGH voltage (5 V) to the LED and charges up the capacitor that exists at the
junction between the two types of silicon sandwiched together in the LED. Then, the RCTIME command
changes the I/O pin to input (doesn’t send a high or low signal, just listens), and measures the time it takes the
junction charge to decay below 1.4 V. This time is controlled by how much light shines on the LED. The
program measures the number of 2 µs time increments it took for the LED voltage to reach 1.4 V and stores it
in a variable named time.

√ Run this program in a fairly well-lit room.
√ Try casting various levels of shade on the LED and observe how the measurement increases, up to a

point.

The largest number of 2 µs time increments the RCTIME command can count is 65535, which is 131.07 ms. If
it takes longer than that for the diode junction voltage to decay, the RCTIME command stores 0 in the time
variable.

√ Increase the amount of shade you cast on the LED and see how close you can get your light
measurement to 65535.

√ Cup your hand over the LED. Can you get it to display 0 when it’s too dark?

' Test LED Light Detector.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

time VAR Word

DO

 HIGH 11
 PAUSE 1
 RCTIME 11, 1, time
 DEBUG HOME, DEC5 ? time
 PAUSE 200

LOOP

Page 8 Gears Solar Tracker with the BASIC Stamp

Your Turn

You can display the number of milliseconds (ms) the RCTIME command takes by dividing time by 1000 with
the / operator.

√ Modify the program so that it displays the decay time in ms.

You can make you’re an RCTIME command for slower decay measurements that take too long for RCTIME.
This involves replacing the RCTIME command with an INPUT command that changes the I/O pin to an input.
This is followed by a loop that counts the number of repetitions until the voltage at the I/O pin decays to below
1.4 V (the I/O pin’s threshold between 1 and 0).

√ Comment the RCTIME command by placing an apostrophe to the left of it and then add this code just
below the commented RCTIME command.

time = 0
INPUT 11
DO UNTIL IN11 = 0
 PAUSE 0
 time = time + 1
LOOP

√ Try casting the same level of shade that you used to cause the RCTIME command to time out and return
0. Now what measurement do you get?

ACTIVITY #3: BUILDING AND TESTING LIGHT DIRECTION SENSOR
Your light direction sensor will be four LEDs inside a section of PVC sprinkler pipe. The tops of the LEDs are
below the top of the sprinkler pipe. Depending on where the light source is, the sprinkler pipe casts a shadow
on some LEDs while others get full light. The BASIC Stamp will be programmed to get light measurements
from each LED with the RCTIME command and compare them to figure out the direction of the light source.

Figure 1-7: Light Direction Sensor

Chapter #1: Limit and Light Sensing Circuits Page 9

Parts List

(4) Resistors – 10 kΩ
(4) LEDs – Yellow
(4) Jumper wires – Black
(2) Additional jumper wires
(1) ¾” Length of ½” diameter white PVC pipe
60 W desk lamp

Schematic and Wiring

Figure 2-2 shows a schematic of the light detector array, and Figure 2-3 shows the recommended arrangement
and wiring. Remember as you build this circuit that each resistor should connect to the LED’s cathode, which
is the terminal by the flat spot on the LED’s plastic case. Each LED’s anode gets connected to ground (Vss).

Figure 1-8 Light Detector Schematic

Figure 1-9 Light Detector Recommended Circuit Placement

Page 10 Gears Solar Tracker with the BASIC Stamp

Differences in Light Level Measurements Indicate Direction

If a light source is directly above the section of PVC pipe in Figure 2-1, it won’t cast any shadows, and all the
light sensors should return roughly the same measurements. As soon as the light source moves off-center, the
PVC cylinder will cast shadows on one or more LEDs.

For example, if the light source moves west, but doesn’t change its vertical position, a shadow will start to
block direct light from shining on the west LED, but it will still get to the rest. The west light detector will
start to return a higher number (less light), while the east one will stay about the same as it was. If the source
of light instead travels west and downward LEDs, the PVC cylinder will cast shadows on the west and bottom
LEDs. Their measurements will go up because they are getting less light, while the east and top LED
measurements will stay about the same as they were.

Figure 1-10 shows the Debug Terminal display from the next example program with a desk lamp shining
almost directly into the PVC cylinder from about two feet above. The LEDs indicate that it might be slightly
down and to the west, but only slightly. If the bulb is dimmer or was held further away, all the values would
be larger. If it is instead brighter or closer, all the values would be smaller. When you move the lamp up, or
down or sideways, or some combination of right/left and up/down, you’ll see differences in the E/W and U/D
values that your programs can use to figure out the direction.

You can also take it outside and try it with the sun on a clear day. If you orient the Solar Tracker so that sun is
shining straight into the tube, all the measurements will be fairly similar. If you orient it so that the sun is not
shining directly into the tube, you will see differences between the E/W and U/D light sensors that indicate
which direction the sun is in relation to the light direction sensor.

Figure 1-10: Debug Terminal Light Measurements

Smaller values indicate more light; larger values indicate less light.

Example Program: Test Light Direction Sensor.bs2

This program will allow you to measure the response of the light direction sensor to the position of a point
light source such as a desk lamp in an otherwise low-light room, or the sun.

√ Load and run the program.
√ Start with a 60 W desk lamp. Point the bulb directly at the light sensor from 2 to 4 feet directly above

the sensor, and record the measurements.

Chapter #1: Limit and Light Sensing Circuits Page 11

√ Next, try pointing the desk lamp bulb at the Solar Tracker from various points east, west, above and
below the direction sensor. (Assume the platform is facing south and you are facing north looking at
it. East will be to your right, and west to your left.)

√ Record the measurements at each point and explain what happens.
√ Try the same distances and angles with a 40 W bulb. What’s the main difference?

' Test Light Direction Sensor.bs2
' Displays measurements of LED light detector array.
' {$STAMP BS2}
' {$PBASIC 2.5}

'-----[Declarations]--

LED_TOP CON 11
LED_WEST CON 10
LED_BOTTOM CON 9
LED_EAST CON 8

LIGHT_TOP CON 3
LIGHT_WEST CON 2
LIGHT_BOTTOM CON 1
LIGHT_EAST CON 0

time VAR Word(4)
index VAR Nib
pindex VAR index

x VAR Nib
y VAR Nib

'-----[Initializataion]---

PAUSE 1000

DEBUG CLS, " Light Levels",
 CRSRXY, 8, 3, "U", CRSRXY, 8, 5, "D",
 CRSRXY, 6, 4, "W", CRSRXY, 10, 4, "E"

'-----[Main]--

DO

 GOSUB Get_Decay_Times
 GOSUB Display_Decay_Times
 PAUSE 500

LOOP

'-----[Subroutine Get_Decay_Times]--

Get_Decay_Times:
 FOR pindex = LED_EAST TO LED_TOP
 HIGH pindex
 PAUSE 1
 RCTIME pindex, 1, time(pindex - LED_EAST)
 NEXT
 RETURN

'-----[Subroutine Display_Decay_Times]--------------------------------------

Display_Decay_Times:
 FOR index = LIGHT_EAST TO LIGHT_TOP
 LOOKUP index, [12, 6, 0, 6], x
 LOOKUP index, [4, 6, 4, 2], y
 DEBUG CRSRXY, x, y, DEC5 time(index), CR
 NEXT
 DEBUG CR, CR
 RETURN

Page 12 Gears Solar Tracker with the BASIC Stamp

How Test Light Direction Sensor.bs2 Works

The Declarations section has four constant declarations for LED I/O pins: LED_TOP, LED_WEST, etc. These
constants were used instead of pin directives because they will get used in a FOR…NEXT loop, and PIN
directives will return the measured value at the I/O pin in that circumstance. The next four declarations
starting with LIGHT_TOP are index values for entries in a variable array that stores light measurements. That
array is declared with time VAR Word(4). A nibble size index variable is also declared, followed by
pindex, which is an alias of index. In other words, index and pindex are two different names for the same
nibble in the BASIC Stamp’s memory. Nibbles named x and y are also declared for positioning the cursor on
the Debug Terminal.

'-----[Declarations]---

LED_TOP CON 11
LED_WEST CON 10
LED_BOTTOM CON 9
LED_EAST CON 8

LIGHT_TOP CON 3
LIGHT_WEST CON 2
LIGHT_BOTTOM CON 1
LIGHT_EAST CON 0

time VAR Word(4)
index VAR Nib
pindex VAR index

x VAR Nib
y VAR Nib

After a 1 second delay, the DEBUG command displays “ Light Levels”, followed by cursor placements
with the CRSRXY formatter to position the U, D, W, and E characters. CRSRXY has to be followed by x, the
number of spaces over, and y, the number of carriage returns down.

'-----[Initializataion]--

PAUSE 1000

DEBUG CLS, " Light Levels",
 CRSRXY, 8, 3, "U", CRSRXY, 8, 5, "D",
 CRSRXY, 6, 4, "W", CRSRXY, 10, 4, "E"

The Main routine calls the Get_Decay_Times subroutine, then the Display_Decay_Times subroutine. Then,
it delays for ½ s before repeating in a DO…LOOP.

'-----[Main]---

DO

 GOSUB Get_Decay_Times
 GOSUB Display_Decay_Times
 PAUSE 500

LOOP

The Get_Decay_Times subroutine uses a FOR…NEXT loop to measure the RC decay time of each LED circuit.
Since LED_EAST is 8, and LED_TOP is 11, the FOR…NEXT loop starts by setting pindex to 8, and it repeats
through pindex = 11. The first time through, it sets P8 high, waits 1 ms, and does an RCTIME measurement
on P8. Since pindex stores 8, and LED_EAST is 8, the result of pindex – LED_EAST is 0. So the result of the
RCTIME pindex, 1, time(pindex – LED_EAST) measurement gets stored in time(0). The second time
through the loop, pindex is 9, so the RCTIME measurement gets performed on the LED circuit connected to

Chapter #1: Limit and Light Sensing Circuits Page 13

P9. The RCTIME result gets stored in time(1) because pindex is now 9, but LED _EAST is still 8. Two more
times through the loop take RCTIME measurements on P10 and P11 and store the results in time(2) and
time(3) respectively.

'-----[Subroutine Get_Decay_Times]-----------------------------------

Get_Decay_Times:

 FOR pindex = LED_EAST TO LED_TOP
 HIGH pindex
 PAUSE 1
 RCTIME pindex, 1, time(pindex - LED_EAST)
 NEXT
 RETURN

The Display_Decay_Times subroutine assumes that four elements in the time array have been loaded with
RC decay measurements. Its FOR…NEXT loop indexes from LIGHT_EAST, which is 0, to LIGHT_TOP, which is
3. Two LOOKUP commands use the index variable to select values from their lookup tables and store them in
x and y variables. For example, if index is 0, the first LOOKUP command stores 12 in x, if index is 1, it
stores 6 in x, and so on. After the LOOKUP commands have stored cursor placement values in the x and y
variables, DEBUG x, y, DEC5 time(index) places the cursor at a location in the Debug Terminal, and then
displays the 5 digit decimal value stored in time(index).

'-----[Subroutine Display_Decay_Times]-------------------------------

Display_Decay_Times:

 FOR index = LIGHT_EAST TO LIGHT_TOP
 LOOKUP index, [12, 6, 0, 6], x
 LOOKUP index, [4, 6, 4, 2], y
 DEBUG CRSRXY, x, y, DEC5 time(index), CR
 NEXT
 DEBUG CR, CR
 RETURN

The first time through the Display_Decay_Times subroutine’s FOR…NEXT loop, index stores 0, so the first
LOOKUP command stores 12 in x and the second LOOKUP command stores 4 in y. Next, DEBUG CRSRXY, x,
y, DEC5 time(index) places the cursor 12 spaces over, and 4 carriage returns down from the top-left corner
of the terminal. Then, it displays the 5 digit decimal contents of time(0). The second time through the loop,
index stores 1. So the LOOKUP commands store 6 in both the x and y variables. The DEBUG command then
displays the contents of time(1) at 6 spaces over and 6 spaces down in the Debug Terminal.

Page 14 Gears Solar Tracker with the BASIC Stamp

Chapter #2: Motor and Piston Control

BEFORE YOU START
Before starting here, complete the activities in these two PDF documents available from www.gearseds.com

• solar_tracker_const_guide_rev3.pdf
• GEARS II Speed Controllersrev8.pdf

ACTIVITY #1: TRACKER MOTOR CONTROL
The motor makes the Solar Tracker platform rotate from east to west so that the panel follows the sun as the
day goes by. In this activity, you will experiment with some code that makes the Solar Tracker platform rotate
east to west, and then back again.

Figure 2-1 shows the Solar Tracker with Board of Education mounted on the Solar Tracker’s platform.

Figure 2-1: Board of Education Mounted on Solar Tracker Platform

Draft note: Revise
based on final supply
configuration.

Parts Required

• Board of Education and BASIC Stamp 2 microcontroller
• GEARS Solar Tracker Mechanical Hardware
• GEARS IDS II Speed Controller with Integrated Valve Control

Connections to the Board of Education (Review)

Figure 2-2 reviews the connections you made between the Board of Education and the GEARS IDS II Speed
Controller with Integrated Valve Control.

√ The IDS II controller’s piston control signal cable is connected to the Board of Education’s P15 servo
port. This cable typically has a black plug.

√ The IDS II controller’s motor control cable is connected to the Board of Education’s P14. This cable
typically has a red plug.

Chapter #2: Motor and Piston Control Page 15

√ DO NOT CONNECT POWER TO THE BOARD OF EDUCATION’S POWER INPUTS. Draft note:
Pending final power supply design.

√ The power jumper between the X4 and X5 servo headers is set to Vin.
√ When the Board of Education’s power switch gets set to 2, it will get its power supply from IDS II

controller via the motor and piston control cables.

Figure 2-2: Board of Education and BASIC Stamp Mounted on Solar Tracker Hardware

Motor Control Test Program

The example programs in this chapter are designed so that Solar Tracker motor and piston control and other
functions such as sensor monitoring and display are all handled in subroutines. Most of the coding you will be
doing is in the Main routine. In the case of motor and piston control and sensor display, your Main routine
will set variable values and then call subroutines. The subroutines will do a job based on the values of the
variables you have set. In later activities, your Main routine will also call subroutines that read sensors and
store the measurements in a series of variables (the time array) for your code in the Main routine to use.

Review of Motor Control Signals for the IDS II:

• Control pulses have to be sent to the IDS II at least once every 500 ms. If the time between pulses is
longer than that, you’ll have to reset power to the IDS II controller to restart it.

• Full speed clockwise motor signal - a pulse that lasts 1 ms (PULSOUT 14, 500)
• Full speed counterclockwise signal - a pulse that lasts 2 ms (PULSOUT 14, 1000)
• Stop signal – a pulse that lasts 1.520 ms (PULSOUT 14, 760)
• For speed control, PULSOUT values closer to 760 make the motor turn slower, and values further from

760 (but not to exceed 500 or 1000) will make the motor turn faster.

Motor control
cable (with red
plug) connected
to P14 port

Piston control
cable (with black
plug) connected
to P15 port

Supply jumper
set to Vin

DO NOT
connect a
supply to the
board of
Education; the
supply comes
from the motor
control cable.

Set power switch to 2

Page 16 Gears Solar Tracker with the BASIC Stamp

The next example program has a subroutine named Motor_Piston_Control that uses a PULSOUT command to
deliver a pulse to the motor control line, which is connected to BASIC Stamp I/O pin P14 (via servo port 14 on
the Board of Education). It uses a variable named motorPulse to determine the control pulse it sends to the
IDS II for motor control. This variable can be set to 500 for full speed clockwise, 1000 for full speed
counterclockwise, and 760 for making it stop. Values closer to 760 will slow the motor down, and values
closer to 500 or 1000 will make the motor turn faster.

After you set the motorPulse variable, all you have to do is call the Motor_Piston_Control subroutine at
least once every 500 ms. Since the code takes some time to run, and the subroutine has a 20 ms pause built-in,
you might want to make that 470 ms or less to be on the safe side.

So, to control motor speed, just set the motorPulse variable and then call the Motor_Piston_Control
subroutine. How about controlling how long it makes the motor turn? The way the next example program
does it is to assume that each subroutine call takes about 1/40 of a second. So, if you want to send the IDS II a
signal that instructs it to make the motor turn for 5 seconds, call the Motor_Piston_Control subroutine 200
times.

pulses 200
second

pulses 40seconds5 =×

Here’s an excerpt from the next example program’s Main routine that instructs the Solar Tracker to turn east
(assuming it’s facing south). This code sets the motorPulse variable to 900 (about 60 % of full speed
counterclockwise). Then, it calls the Motor_Piston_Control subroutine 150 times. You can assume that
each time through the loop takes about 1/40 of a second, so the IDS II speed controller gets just under 4
seconds of signal to make the motor turn counterclockwise at 60% of full speed.

motorPulse = 900 ' Rotate East

FOR counter = 1 TO 150 ' for about 3 seconds.
 GOSUB Motor_Piston_Control
NEXT

Here’s another excerpt from the next example program. It also makes the Solar Tracker’s motor turn at about
60 % of full speed, but this time, the motor will turn counterclockwise instead of clockwise, and the Solar
Tracker’s platform will rotate toward the west (again, assuming it’s facing south).

motorPulse = 600 ' Rotate West

FOR counter = 1 TO 150 ' for about 3 seconds
 GOSUB Motor_Piston_Control
NEXT

Here is one last excerpt from the next example program. It’s at the end of the Main routine, and it sets the
motor to stop/neutral and then calls the Motor_Piston_Control subroutine indefinitely. Why not just stop
calling the Motor_Piston_Control subroutine? As mentioned earlier, if you do that, you’ll have to power to
the IDS II controller by shutting off the power and then turning it back on.

motorPulse = 760 ' Set motor to neutral

DO ' Piston & motor neutral indefinitely
 GOSUB Motor_Piston_Control
LOOP

Example Program: Basic Motor Control.bs2

This next example sends a turn counterclockwise at 60 % of full speed signal to the IDS II controller for about
3.75 seconds, followed by a clockwise at 60 % of full speed signal for 3.75 seconds, followed by a stop signal
that lasts indefinitely. Assuming the platform is in the center of its range of motion, and facing south, the
program will make its platform rotate east briefly, then west briefly, and then stop.

Chapter #2: Motor and Piston Control Page 17

In addition to the code examples just discussed, the Main routine has DEBUG commands that display the value
of motorPulse each time it gets changed.

√ Make sure that the platform is near the center of its range of motion before running the program.
√ Open Basic Motor Control.bs2 into the BASIC Stamp Editor
√ Turn on Solar Tracker.
√ Load the program into the BASIC Stamp. (Click the BASIC Stamp Editor’s Run button or select Run

from the Run menu.)
√ Verify that the Solar Tracker rotates slowly east, then slowly west, then stays still.
√ Press and release the Board of Education’s Reset button to restart the program and repeat the action.

' Basic Motor Control.bs2
' Test Solar Tracker motor control. This program sends a rotate
' counter clockwise at 60 % of full speed for 3.75 seconds, followed by
' a corresponding clockwise signal, followed by an indefinite full-stop.

' {$STAMP BS2}
' {$PBASIC 2.5}

'-----[Declarations]--

MOTOR PIN 14 ' Red header
PISTON PIN 15 ' Black header

PULSE_DELAY CON 20 ' 20 ms between pulses

motorPulse VAR Word ' Motor control pulse duration
pistonPulse VAR Word ' Pistion control pulse duration
counter VAR Byte ' Counting variable

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.

'-----[Main]--

motorPulse = 900 ' Rotate East
DEBUG ? motorPulse

FOR counter = 1 TO 150 ' for about 3.75 seconds.
 GOSUB Motor_Piston_Control
NEXT

motorPulse = 600 ' Rotate West
DEBUG ? motorPulse

FOR counter = 1 TO 150 ' for about 3.75 seconds
 GOSUB Motor_Piston_Control
NEXT

motorPulse = 760 ' Set motor to neutral
DEBUG ? motorPulse

DO ' Piston & motor neutral indefinately
 GOSUB Motor_Piston_Control
LOOP

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Must call at least every 500 ms.

Motor_Piston_Control:

 PULSOUT MOTOR, motorPulse ' Motor control pulse

Page 18 Gears Solar Tracker with the BASIC Stamp

 PULSOUT PISTON, pistonPulse ' Pistion control pulse
 PAUSE 20

 RETURN

'-----[Subroutine ST_Controller_Init]---------------------------------------

' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on channels,
' pause antoher 1/10 s, then neutral pulses for ~ 2 s so that motor/valve
' controller gives BS2 control.

ST_Controller_Init:

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 Return

Your Turn – Controlling Speed and Rotation Angle

In the program’s Main routine, the value of motorPulse controls speed, and the number of times the
Motor_Piston_Control subroutine gets called controls the amount of time the signal gets sent, which in turn
controls the run time.

DO NOT USE LARGE VALUES THAT MAKE THE TRACKER PLATFORM ROTATE TOO
FAR! If the tracker platform rotates too far, it will pull apart the pneumatic lines, and then
you’ll have a lot of repair work to do. The limit switches will not be incorporated into motion
control until Chapter 3.

√ Experiment with different values of motorPulse = _____ and FOR counter = 1 to _____.
√ Modify the program so that it turns to face east, and then turns about 1/12th of the way back toward

west each 10 seconds for 120 seconds. This will emulate an hourly position update during a 12 hour
day. The Solar Tracker should then reset back to pointing east, and wait for the next day to start (120
seconds later).

ACTIVITY #2: TRACKER PISTON CONTROL
The Solar Tracker’s piston controls whether the platform is facing low or high in the sky. In this activity, you
will test piston control with a modified Main routine. The rest of the example program (variables, subroutines,
etc) will be the same.

Controlling the Piston

The Motor_Piston_Control subroutine also sends piston control signals to the IDS II controller. All you
have to do is set a variable named pistonPulse before calling Motor_Piston_Control. You can set
pistonPulse to 960 to let pressurized air into the cylinder and extend the piston rod, or 760 to release air
from the cylinder and allow the built-in spring to retract the rod. You can also control the amount of time the
piston is in a given position the same way you just controlled motor run time, by calling the
Motor_Piston_Control subroutine in a loop. (Again, assume 40 pulses per second.)

Chapter #2: Motor and Piston Control Page 19

Here’s a Main routine excerpt from the next example program (below). It sets the pistonPulse variable to
960 (cylinder pressurized, piston rod extended, then waits for about 3.75 seconds with a FOR…NEXT loop that
calls the Motor_Piston_Control subroutine 150 times. Then, it sets the pistonPulse variable to 760
(release air, piston rod retracts), and the DO…LOOP that follows calls the Motor_Piston_Control subroutine
indefinitely.

'-----[Main]--

pistonPulse = 960 ' Set piston to push plate forward

FOR counter = 1 TO 150 ' for about 3.75 seconds
 GOSUB Motor_Piston_Control
NEXT

pistonPulse = 760 ' Set piston to let go

DO ' Piston & motor neutral indefinitely
 GOSUB Motor_Piston_Control
LOOP

Example Program: Basic Piston Control.bs2

This program tilts the Solar Tracker’s platform forward briefly so that it faces lower in the sky. Then, it
releases the platform, so that it faces higher in the sky again.

√ Pump up the air tank.
√ Open the manual valve.
√ Turn on power to the Solar Tracker.
√ Load Basic Piston Control.bs2 into the BASIC Stamp.

' Basic Piston Control.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

'-----[Declarations]--

MOTOR PIN 14 ' Red header
PISTON PIN 15 ' Black header

PULSE_DELAY CON 20 ' 20 ms between pulses

motorPulse VAR Word ' Motor control pulse duration
pistonPulse VAR Word ' Pistion control pulse duration
counter VAR Byte ' Counting variable

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.

'-----[Main]--

pistonPulse = 960 ' Set piston to push plate forward
DEBUG ? pistonPulse

FOR counter = 1 TO 150 ' for about 3.75 seconds
 GOSUB Motor_Piston_Control
NEXT

pistonPulse = 760 ' Set piston to let go
DEBUG ? pistonPulse

DO ' Piston & motor neutral indefinately
 GOSUB Motor_Piston_Control
LOOP

Page 20 Gears Solar Tracker with the BASIC Stamp

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Must call at least every 500 ms.

Motor_Piston_Control:

 PULSOUT MOTOR, motorPulse ' Motor control pulse
 PULSOUT PISTON, pistonPulse ' Piston control pulse
 PAUSE 20

 RETURN

'-----[Subroutine ST_Controller_Init]---------------------------------------

' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on channels,
' pause antoher 1/10 s, then neutral pulses for ~ 2 s so that motor/valve
' controller gives BS2 control.

ST_Controller_Init:

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 RETURN

Your Turn

You can set both the motorPulse and pistonPulse values before calling the Piston_Motor_Control
subroutine.

√ Write a Main routine that tips the platform forward, rotates from east to west for about 45°, then
releases the pneumatic cylinder, allowing the platform to fall back, and then rotates the platform 45°
from west back to east.

√ Modify the program so that it turns to face east, and tilts the platform forward so that it faces low in
the sky. Each 10 seconds, it turns 1/12th of the way toward west. After 30 seconds, the platform tilts
back, so that it faces high in the sky. Continue 1/12th turns every 10 seconds for 60 seconds. Then,
tilt low in the sky again for the last 30 seconds.

Chapter #2: Motor and Piston Control Page 21

ACTIVITY #3: TERMINAL CONTROLLED SOLAR TRACKER
For testing and adjustment, it’s often helpful to be able to connect the BASIC Stamp to a PC and use the
Debug Terminal to control the Solar Tracker’s motions. Figure 2-3 shows an example of how the next
program allows you to control the Solar Tracker.

Figure 2-3 Debug Terminal Controlling Solar Tracker

With this program, you can simply click the Debug Terminal’s transmit windowpane and start typing
characters from the menu to control the Solar Tracker. Each time you type W, the Solar Tracker will rotate its
platform a little faster toward the west. S causes it to stop. D actuates the piston, tilting the platform forward.
D is for Down. Each time you type E, the platform rotates a little faster toward the east (or in some cases
slower to the west if it was already moving that direction). U is for up, which drains the air from the cylinder
and allows the platform to fall back and face further up in the sky.

Same Program – Different Main Routine

Terminal Controlled Solar Tracker.bs2 uses the same variables and subroutines as the examples in the previous
two activities, and the code in the Main routine is what does the work. This time, we’ll try the code first, and
then look at how it works.

Example Program: Terminal Controlled Solar Tracker.bs2

This example program makes it possible to control the Solar Tracker Platform by typing characters into the
Debug Terminal’s transmit windowpane.

√ Pump up the air tank if needed.
√ Open the manual air valve.
√ Turn on power to the Solar Tracker.
√ Load Terminal Controlled Solar Tracker.bs2 into the BASIC Stamp.
√ Keep in mind, you can stop the Solar Tracker at any time by pressing the S key on your keyboard

driving it with the Debug Terminal.
√ Try typing the character sequence shown in Figure 2-3 into the Debug Terminal’s transmit

windowpane. The tracker platform should rotate west, tilt forward (down), rotate east, and then tilt
backward (up), and then stop.

Transmit
Windowpane

Receive
Windowpane

Page 22 Gears Solar Tracker with the BASIC Stamp

' Terminal Controlled Solar Tracker.bs2
' Control the Solar Tracker by typing characters into the Debug Terminal’s
' transmit windowpane.

' {$STAMP BS2}
' {$PBASIC 2.5}

'-----[Declarations]--

MOTOR PIN 14 ' Red header
PISTON PIN 15 ' Black header

PULSE_DELAY CON 20 ' 20 ms between pulses

motorPulse VAR Word
pistonPulse VAR Word
counter VAR Byte
char VAR Byte

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.

' Display menu
DEBUG CLS, "E = Rotate toward East", CR, "W = Rotate toward West", CR,
 "U = Tilt Up", CR, "D = Tilt Down", CR, "S = STOP", CR, CR

'-----[Main]--

DO ' DO from DO...LOOP

 SERIN 16, 84, 400, No_Serin, [char] ' Get a character from RX pane

 SELECT char ' Decide what to do with char
 CASE "W", "w" ' W for west
 motorPulse = motorPulse - 10 MIN 500 ' Subtract 10 for each W
 CASE "E", "e" ' E for east
 motorPulse = motorPulse + 10 MAX 1000 ' Add 10 for each E
 CASE "S", "s" ' S for stop motor
 motorPulse = 760 ' Set motor to stop
 CASE "D", "d" ' D for down
 pistonPulse = 960 ' Push piston platform w/ piston
 CASE "U", "u" ' U for up
 pistonPulse = 760 ' Release pressure from cylendar
 CASE ELSE ' If no char for 400 ms
 motorPulse = 760 ' Stop motor
 pistonPulse = 760 ' Release piston
 ENDSELECT ' End of char decision list

 No_Serin: ' Timeout label
 GOSUB Motor_Piston_Control ' Call control sub

 ' Display motor and piston pulse values
 DEBUG CRSRXY, 0, 7, ? motorPulse, ? pistonPulse

LOOP ' LOOP from DO...LOOP

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Must call at least every 500 ms.

Motor_Piston_Control:

 PULSOUT MOTOR, motorPulse ' Motor control pulse
 PULSOUT PISTON, pistonPulse ' Piston control pulse
 PAUSE 20

 RETURN

'-----[Subroutine ST_Controller_Init]---------------------------------------

Chapter #2: Motor and Piston Control Page 23

' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on channels,
' pause antoher 1/10 s, then neutral pulses for ~ 2 s so that motor/valve
' controller gives BS2 control.

ST_Controller_Init:

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 RETURN

How Terminal Controlled Solar Tracker.bs2 Works

The only thing different about this program is the Main routine. If you have already been through What’s a
Microcontroller? or Robotics with the Boe-Bot, most of that code will look familiar, with maybe one line that
you’ll want to look up in the BASIC Stamp Manual.

√ Look up and read about any commands that do not look familiar to you in the BASIC Stamp Manual (a
free download from www.parallax.com) or look in the BASIC Stamp Editor’s Help.

All of the commands in the Main routine are nested in a DO…LOOP. The Main routine starts with DO and ends
with LOOP, which cause all the code in between to be repeated indefinitely.

'-----[Main]--

DO ' DO from DO...LOOP

If you have used the DEBUGIN command before, you might be wondering why the SERIN command was used
here to get a character from the Debug Terminal’s transmit windowpane. The reason is because the SERIN
command has a Timeout argument that prevents the SERIN command from waiting forever if it doesn’t get a
character. DEBUGIN does not have that feature.

 SERIN 16, 84, 400, No_Serin, [char] ' Get a character from RX pane

SERIN 16, 84, [char] would be the same as DEBUGIN char. The 16 is for pin 16. Since
I/O pins only go from 0 to 15, 16 is a special argument that makes the SERIN command
use the BASIC Stamp module’s SIN pin for communication with the PC.

The SERIN command’s Timeout argument is important here because the main routine needs to call the
Motor_Piston_Control subroutine at least once every 500 ms. Note that the SERIN command’s Timeout
argument is 400, and the Tlabel argument is No_Serin. So, if no character is received in 400 ms, the
program jumps to the No_Serin label (which is later in the Main routine), and continues from there, calling
the Motor_Piston_Control subroutine within the required 500 ms.

If you type a character into the Debug Terminal’s transmit windowpane, the SERIN command stores the
character in a variable named char. Next, a SELECT…CASE statement evaluates the char variable on a case-by-
case basis and decides what action to take. For example, if you typed either “W” or “w”, the SELECT…CASE
statement subtracts 10 from the motorPulse variable. If motorPulse started out at 760 (stopped) and you
type “W” 12 times, motorPulse will store 640, and the platform will rotate pretty rapidly to the west. Each
time you type “E” or “e”, the SELECT…CASE statement will add 10 to motorPulse to make it turn the other

Page 24 Gears Solar Tracker with the BASIC Stamp

direction. To make it stop, you can type “S”, or “s”, and so on… If you hit the wrong key, the CASE ELSE
condition sets both the motorPulse and pistonPulse variables to neutral, 760.

 SELECT char ' Decide what to do with char
 CASE "W", "w" ' W for west
 motorPulse = motorPulse - 10 MIN 500 ' Subtract 10 for each W
 CASE "E", "e" ' E for east
 motorPulse = motorPulse + 10 MAX 1000 ' Add 10 for each E
 CASE "S", "s" ' S for stop motor
 motorPulse = 760 ' Set motor to stop
 CASE "D", "d" ' D for down
 pistonPulse = 960 ' Push piston platform w/ piston
 CASE "U", "u" ' U for up
 pistonPulse = 760 ' Release pressure from cylendar
 CASE ELSE ' If no char for 400 ms
 motorPulse = 760 ' Stop motor
 pistonPulse = 760 ' Release piston
 ENDSELECT ' End of char decision list

At this point, either the SERIN command timed out and sent the program to the No_Serin label, or the
SELECT…CASE statement just finished figuring out what to do. Either way, it’s time to send another update to
the Motor_Piston_Control subroutine.

 No_Serin: ' Timeout label
 GOSUB Motor_Piston_Control ' Call control sub

This program displays the values of motorPulse and pistonPulse below the menu so that you can see what
values they hold after you have pressed various keys.

 ' Display motor and piston pulse values
 DEBUG CRSRXY, 0, 7, ? motorPulse, ? pistonPulse

When the program gets to this LOOP command, it jumps back to the DO at the beginning of the Main routine.

LOOP ' LOOP from DO...LOOP

Your Turn

√ Modify the program so that the motor responds more quickly (turns faster) for each time you enter a
“W” or “E”.

 Chapter#3: Tracking with Sensors Page 25

Chapter #3: Tracking with Sensors

Now that you’ve got the sensing and control aspects down individually, it’s time to put the two together and
make the Solar Tracker track a light source. This chapter will focus on indoor experiments where your Solar
Tracker can stay connected to a PC so that you can observe what the sensors sense in the Debug Terminal.
After you are done with this chapter, your challenge will be to adjust the program so that it tracks reliably
outside.

It’s important when developing a product or application to focus on each basic component individually. After
you get several components working well, then combine them and trouble-shoot as needed. In keeping with
this approach, this chapter examines each aspect of using sensors to track a light source individually, and then
combines them at the end, as follows:

• Experiment with tracking a light source’s horizontal motion.
• Incorporate and test the limit switches to verify that they will prevent the Solar Tracker from over-

rotating.
• Incorporate some constants into your code so that you can adjust the way the Solar Tracker behaves

by just changing some values at the beginning of the program.
• Vertical light tracking.
• Finally, combine vertical and horizontal tracking with limit switch reaction for a full-featured light

tracking mechanism.

ACTIVITY #1: HORIZONTAL TRACKING
In this activity, you will examine and test code that makes the Solar Tracker rotate and align its platform with a
light source. You will also modify the code so that it does not attempt to make any adjustments if it’s too dark.

Horizontal Tracking Code

This code from the next example program’s Main routine makes it convenient to track a light source
horizontally. The first thing it does is calculate the difference between the time(LIGHT_EAST) and
time(LIGHT_WEST) measurements.

 error = time(LIGHT_WEST) - time(LIGHT_EAST)

This difference has to be compared with the overall light levels; otherwise, it doesn’t mean anything. For
example, a difference of 700 might not be that large if the average of the two horizontal light sensors is 30,000.
However, a difference of 700 is large if the average of the two light sensors is only 2,000. So, the command
average = time(LIGHT_EAST) + time(LIGHT_WEST) / 2 takes the average of the two measurements,
which gives a good indication of how bright it is.

 average = time(LIGHT_EAST) + time(LIGHT_WEST) / 2

Next, divide the error into the average. If the result is smaller than some threshold value (6 in this case), it
means the Solar Tracker needs to start moving. If you want to make the Solar Tracker more sensitive to
differences in light measurements, pick a number larger than 6. If you want it to be less sensitive, pick a
smaller number.

 IF average / ABS(error) < 6 THEN

Which direction does the Solar Tracker need to rotate? It depends on which of the two light measurements
were larger. If the time(LIGHT_WEST) measurement is larger, it means the light source is to the west. So, the

Page 26 Gears Solar Tracker with the BASIC Stamp

Solar Tracker’s motor needs to turn clockwise with motorPulse = 650, which makes the platform rotate
toward the west. Otherwise, the Solar Tracker needs to turn east, with motorPulse = 870.

 IF time(LIGHT_WEST) > time(LIGHT_EAST) THEN
 motorPulse = 650
 ELSE
 motorPulse = 870
 ENDIF

Now, if average / ABS(error) is greater than 6, there’s no reason to rotate the Solar Tracker. So this else
condition sets motorPulse to 760, which means the motor will not turn.

 ELSE
 motorPulse = 760
 ENDIF

Example Program: Horizontal Tracking.bs2

Horizontal Tracking is a combination of programs from previous chapters. The only new code is the
calculations and IF…THEN statements in the Main routine.

√ Examine the code in the Main routine and make sure you understand it.
√ Use a 60 W incandescent desk lamp to test this code indoors.
√ Keep the light direction sensor out of direct sunlight from the windows so that it will see the desk

lamp.
√ Load Horizontal Tracking.bs2 into the BASIC Stamp.
√ Hold the desk lamp in the 1 yard or 1 meter range above the Solar Tracker’s light direction sensor. If

the light is directly above the direction sensor and shining straight at it, it should not move. If you
move the light to the Solar Tracker’s east or west, it should rotate to follow the light source.

√ Be careful not to over-rotate the Solar Tracker.

' Horizontal Tracking.bs2
' Control horizontal rotation with horizontal light direction sensor.

' {$STAMP BS2}
' {$PBASIC 2.5}

'-----[I/O Pin Definitions]---

PISTON PIN 15 ' Black header
MOTOR PIN 14 ' Red header

LED_TOP CON 11
LED_WEST CON 10
LED_BOTTOM CON 9
LED_EAST CON 8

SWITCH_WEST PIN 7
SWITCH_EAST PIN 6

'-----[Constants]---

LIGHT_TOP CON 3
LIGHT_WEST CON 2
LIGHT_BOTTOM CON 1
LIGHT_EAST CON 0

PULSE_DELAY CON 20 ' 20 ms between pulses

'-----[Variables]---

motorPulse VAR Word
pistonPulse VAR Word
counter VAR Word

 Chapter#3: Tracking with Sensors Page 27

average VAR Word
error VAR Word
time VAR Word(4)
index VAR Nib
pindex VAR index
x VAR Nib
y VAR Nib

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.
DEBUG CLS, " Light Levels",
 CRSRXY, 8, 3, "U", CRSRXY, 8, 5, "D",
 CRSRXY, 6, 4, "W", CRSRXY, 10, 4, "E"

'-----[Main]--

DO

 GOSUB Get_Decay_Times
 GOSUB Display_Decay_Times

 error = time(LIGHT_WEST) - time(LIGHT_EAST)
 average = time(LIGHT_EAST) + time(LIGHT_WEST) / 2
 IF average / ABS(error) < 6 THEN
 IF time(LIGHT_WEST) > time(LIGHT_EAST) THEN
 motorPulse = 650
 ELSE
 motorPulse = 870
 ENDIF
 ELSE
 motorPulse = 760
 ENDIF

 GOSUB Motor_Piston_Control

LOOP

'-----[Subroutine Get_Decay_Times]--

Get_Decay_Times:

 FOR pindex = LED_EAST TO LED_TOP
 HIGH pindex
 PAUSE 1
 RCTIME pindex, 1, time(pindex - LED_EAST)
 NEXT

 RETURN

'-----[Subroutine Display_Decay_Times]--------------------------------------

Display_Decay_Times:

 FOR index = LIGHT_EAST TO LIGHT_TOP
 LOOKUP index, [12, 6, 0, 6], x
 LOOKUP index, [4, 6, 4, 2], y
 DEBUG CRSRXY, x, y, DEC5 time(index), CR
 NEXT
 DEBUG CR, CR

 RETURN

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Must call at least every 500 ms.

Motor_Piston_Control:
 PULSOUT MOTOR, motorPulse
 PULSOUT PISTON, pistonPulse
 PAUSE 20

Page 28 Gears Solar Tracker with the BASIC Stamp

 RETURN

'-----[Subroutine ST_Controller_Init]---------------------------------------

' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on channels,
' pause antoher 1/10 s, then neutral pulses for ~ 2 s so that motor/valve
' controller gives BS2 control.

ST_Controller_Init:

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 RETURN

Your Turn

If it’s cloudy outside, the light becomes more evenly distributed and difficult for the Solar Tracker to track.
When you take the Solar Tracker outdoors, you’ll need to adjust a value that prevents it from attempting to
adjust under these circumstances. The code below has an extra IF…THEN statement at the beginning, and an
extra ELSE condition at the end. Currently, it compares the time(LIGHT_WEST) and time(LIGHT_EAST)
measurements to 30000, which is pretty dark. If both light measurements are less than 30,000, the code moves
on to check and see if there’s enough difference between the two sensors for a position adjustment. If either of
the light measurements is greater than 30000, the code below skips everything, and ELSE motorPulse = 760
ENDIF makes the motor stay still.

IF time(LIGHT_WEST) < 30000 AND time(LIGHT_EAST) < 30000 THEN
 error = time(LIGHT_WEST) - time(LIGHT_EAST)
 average = time(LIGHT_EAST) + time(LIGHT_WEST) / 2
 IF average / ABS(error) < 6 THEN
 IF time(LIGHT_WEST) > time(LIGHT_EAST) THEN
 motorPulse = 650
 ELSE
 motorPulse = 870
 ENDIF
 ELSE
 motorPulse = 760
 ENDIF
 ELSE
 motorPulse = 760
 ENDIF

√ Try the Solar Tracker with the modified code. Reduce the light measurement thresholds (the 30000

values) so that they cause the Solar Tracker to stop adjusting if you cast a shadow with a fairly large
object between the light direction sensor and your desk lamp.

ACTIVITY #2: DOCUMENTING THE CODE
The code example in the previous activity’s Main routine had a lot of numbers that needed to be adjusted, 6,
30000, and if you want to adjust the motor speeds, 650 and 870. Here are some constant declarations. Add
them to your code, and replace the values in the main routine with the constant names.

MAX_TIME CON 30000
PULSE_CCW CON 870
PULSE_CW CON 650
PULSE_STOP CON 760
MAX_ERROR_H CON 6

 Chapter#3: Tracking with Sensors Page 29

ACTIVITY #3: LIMIT SWITCHES FOR HORIZONTAL TRACKING
If the Solar Tracker rotates too far in either direction, it might damage the wiring, pneumatic tubing, or both.
In this activity, you will mount and test limit switches that will prevent the Solar Tracker from over-rotating.

Adding IF…THEN Statements to Prevent Rotation if a Switched is Pressed

Two additional IF…THEN statements can be added to the Main Routine to stop the Solar Tracker if its rotating
platform has bumped into a limit switch. Notice that the code that set the motorPulse to PULSE_CW (650)
now has an IF condition that checks to make sure the switch is sending a 1 to the I/O pin. If it’s not, it means
it’s zero instead. In that case, the IF…THEN statement sets the motorPulse variable to PULSE_STOP because
the platform bumped into the switch.

 ...
 IF time(LIGHT_WEST) > time(LIGHT_EAST) THEN
 IF SWITCH_WEST=1 THEN motorPulse=PULSE_CW ELSE motorPulse=PULSE_STOP
 ELSE
 IF SWITCH_EAST=1 THEN motorPulse=PULSE_CCW ELSE motorPulse=PULSE_STOP
 ...

Example Program: Horizontal Rotation Control with Limit Switches.bs2

This program senses when the Solar Tracker’s platform has rotated far enough to bump into a limit switch and
stops the motor when it detects this condition.

√ Load the modified code into the BASIC Stamp.
√ Test the limit switches manually first. Position the 60 W desk lamp so that its light is shining at the

direction sensor at an angle that causes the Solar Tracker’s platform to start rotating.
√ Press the limit switch with your hand and verify that the motor stops.

' Horizontal Rotation Control with Limit Switches.bs2
' Control horizontal rotation with horizontal light direction sensor.

' {$STAMP BS2}
' {$PBASIC 2.5}

'-----[I/O Pin Definitions]---

PISTON PIN 15 ' Black header
MOTOR PIN 14 ' Red header

LED_TOP CON 11
LED_WEST CON 10
LED_BOTTOM CON 9
LED_EAST CON 8

SWITCH_WEST PIN 7
SWITCH_EAST PIN 6

'-----[Constants]---

LIGHT_TOP CON 3
LIGHT_WEST CON 2
LIGHT_BOTTOM CON 1
LIGHT_EAST CON 0

PULSE_DELAY CON 20 ' 20 ms between pulses

MAX_TIME CON 30000
PULSE_CCW CON 870
PULSE_CW CON 650
PULSE_STOP CON 760
MAX_ERROR_H CON 6

'-----[Variables]---

Page 30 Gears Solar Tracker with the BASIC Stamp

motorPulse VAR Word
pistonPulse VAR Word
counter VAR Word
average VAR Word
error VAR Word
time VAR Word(4)
index VAR Nib
pindex VAR index
x VAR Nib
y VAR Nib

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.
DEBUG CLS, " Light Levels",
 CRSRXY, 8, 3, "U", CRSRXY, 8, 5, "D",
 CRSRXY, 6, 4, "W", CRSRXY, 10, 4, "E"

'-----[Main]--

DO

 GOSUB Get_Decay_Times
 GOSUB Display_Decay_Times

 IF time(LIGHT_WEST) < MAX_TIME AND time(LIGHT_EAST) < MAX_TIME THEN
 error = time(LIGHT_WEST) - time(LIGHT_EAST)
 average = time(LIGHT_EAST) + time(LIGHT_WEST) / 2
 IF average / ABS(error) < MAX_ERROR_H THEN
 IF time(LIGHT_WEST) > time(LIGHT_EAST) THEN
 IF SWITCH_WEST=1 THEN motorPulse=PULSE_CW ELSE motorPulse=PULSE_STOP
 ELSE
 IF SWITCH_EAST=1 THEN motorPulse=PULSE_CCW ELSE motorPulse=PULSE_STOP
 ENDIF
 ELSE
 motorPulse = PULSE_STOP
 ENDIF
 ELSE
 motorPulse = PULSE_STOP
 ENDIF

 GOSUB Motor_Piston_Control

LOOP

'-----[Subroutine Get_Decay_Times]--

Get_Decay_Times:

 FOR pindex = LED_EAST TO LED_TOP
 HIGH pindex
 PAUSE 1
 RCTIME pindex, 1, time(pindex - LED_EAST)
 NEXT

 RETURN

'-----[Subroutine Display_Decay_Times]--------------------------------------

Display_Decay_Times:

 FOR index = LIGHT_EAST TO LIGHT_TOP
 LOOKUP index, [12, 6, 0, 6], x
 LOOKUP index, [4, 6, 4, 2], y
 DEBUG CRSRXY, x, y, DEC5 time(index), CR
 NEXT
 DEBUG CR, CR

 RETURN

 Chapter#3: Tracking with Sensors Page 31

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Must call at least every 500 ms.

Motor_Piston_Control:
 PULSOUT MOTOR, motorPulse
 PULSOUT PISTON, pistonPulse
 PAUSE 20
 RETURN

'-----[Subroutine ST_Controller_Init]---------------------------------------

' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on channels,
' pause antoher 1/10 s, then neutral pulses for ~ 2 s so that motor/valve
' controller gives BS2 control.

ST_Controller_Init:

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 RETURN

ACTIVITY #4: VERTICAL TRACKING
While horizontal tracking uses a DC motor and can make fine adjustments, vertical tracking features two levels
of tilt controlled by a linear actuator. They can either be used for summer vs. winter, or to get a better look at
the sun in the earlier and later parts of the day.

Vertical Tracking Control Code

This is the vertical tracking test code from the next example program’s Main routine. It is very similar to the
horizontal tracking code.

 IF time(LIGHT_TOP) < MAX_TIME AND time(LIGHT_BOTTOM) < MAX_TIME THEN
 error = time(LIGHT_TOP) - time(LIGHT_BOTTOM)
 average = time(LIGHT_TOP) + time(LIGHT_BOTTOM) / 2
 IF average / ABS(error) < MAX_ERROR_V THEN
 IF time(LIGHT_BOTTOM) > time(LIGHT_TOP) THEN
 pistonPulse = PISTON_PUSH
 ELSE
 pistonPulse = PISTON_RELEASE
 ENDIF
 ENDIF
 ENDIF

If both light measurements are less than MAX_TIME, the code subtracts time(LIGHT_BOTTOM) from
time(LIGHT_TOP) to calculate the error, calculates the average of the light time(LIGHT_TOP) and
time(LIGHT_BOTTOM) measurements, and then divides the error into the average. If the result is les than 2
(MAX_ERROR_V), it means the difference it pretty large, and it’s time to change the tilt. If
time(LIGHT_BOTTOM) is greater than time(LIGHT_TOP), it means the light source is low on the horizon. So
the pistonPulse variable gets set to PISTON_PUSH (960). This pushes the platform forward so that it tilts
toward the horizon. Otherwise, the light source is pretty high up, so pistonPulse gets set to
PISTON_RELEASE, the piston lets go, and the platform faces higher above the horizon.

Page 32 Gears Solar Tracker with the BASIC Stamp

Example Program: Test Tilt Control.bs2

This code has the vertical control test code discussed earlier, and the horizontal control code was removed.

√ Make sure the pneumatic reservoir is pressurized.
√ Load the modified code into the BASIC Stamp.
√ Point your 60 W lamp at the light direction sensor directly above it (so that the light goes straight into

the PVC pipe from 1 yard or 1 meter above). The piston should remain in its neutral position.
√ Gradually bring the lamp toward the horizon. (Make sure the bulb is pointed directly at the light

direction sensor the whole time.) At some point, the platform should abruptly tilt forward.
√ Gradually bring the lamp back up to the positing you started it with, and the platform should tip back

to its neutral position.

' Test Tilt Control.bs2
' {$STAMP BS2}
' {$PBASIC 2.5}

'-----[I/O Pin Definitions]---

PISTON PIN 15 ' Black header
MOTOR PIN 14 ' Red header

LED_TOP CON 11
LED_WEST CON 10
LED_BOTTOM CON 9
LED_EAST CON 8

SWITCH_WEST PIN 7
SWITCH_EAST PIN 6

'-----[Constants]---

LIGHT_TOP CON 3
LIGHT_WEST CON 2
LIGHT_BOTTOM CON 1
LIGHT_EAST CON 0

PULSE_DELAY CON 20 ' 20 ms between pulses

MAX_TIME CON 30000
PULSE_CCW CON 870
PULSE_CW CON 650
PULSE_STOP CON 760
PISTON_PUSH CON 960
PISTON_RELEASE CON 760
MAX_ERROR_H CON 6
MAX_ERROR_V CON 2

'-----[Variables]---

motorPulse VAR Word
pistonPulse VAR Word
counter VAR Word
average VAR Word
error VAR Word
time VAR Word(4)
index VAR Nib
pindex VAR index
x VAR Nib
y VAR Nib

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.
DEBUG CLS, " Light Levels",
 CRSRXY, 8, 3, "U", CRSRXY, 8, 5, "D",
 CRSRXY, 6, 4, "W", CRSRXY, 10, 4, "E"

 Chapter#3: Tracking with Sensors Page 33

'-----[Main]--

DO

 GOSUB Get_Decay_Times
 GOSUB Display_Decay_Times

 IF time(LIGHT_TOP) < MAX_TIME AND time(LIGHT_BOTTOM) < MAX_TIME THEN
 error = time(LIGHT_TOP) - time(LIGHT_BOTTOM)
 average = time(LIGHT_TOP) + time(LIGHT_BOTTOM) / 2
 IF average / ABS(error) < MAX_ERROR_V THEN
 IF time(LIGHT_BOTTOM) > time(LIGHT_TOP) THEN
 pistonPulse = PISTON_PUSH
 ELSE
 pistonPulse = PISTON_RELEASE
 ENDIF
 ENDIF
 ENDIF

 GOSUB Motor_Piston_Control

LOOP

'-----[Subroutine Get_Decay_Times]--

Get_Decay_Times:

 FOR pindex = LED_EAST TO LED_TOP
 HIGH pindex
 PAUSE 1
 RCTIME pindex, 1, time(pindex - LED_EAST)
 NEXT

 RETURN

'-----[Subroutine Display_Decay_Times]--------------------------------------

Display_Decay_Times:

 FOR index = LIGHT_EAST TO LIGHT_TOP
 LOOKUP index, [12, 6, 0, 6], x
 LOOKUP index, [4, 6, 4, 2], y
 DEBUG CRSRXY, x, y, DEC5 time(index), CR
 NEXT
 DEBUG CR, CR

 RETURN

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Must call at least every 500 ms.

Motor_Piston_Control:
 PULSOUT MOTOR, motorPulse
 PULSOUT PISTON, pistonPulse
 PAUSE 20
 RETURN

'-----[Subroutine ST_Controller_Init]---------------------------------------

' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on channels,
' pause antoher 1/10 s, then neutral pulses for ~ 2 s so that motor/valve
' controller gives BS2 control.

ST_Controller_Init:

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

Page 34 Gears Solar Tracker with the BASIC Stamp

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 RETURN

Your Turn – Testing both Horizontal and Vertical

Try adding the horizontal control code to the main routine either immediately before or immediately after the
vertical control code. It should provide both horizontal and vertical light tracking.

ACTIVITY #5: ALL TOGETHER NOW
This activity features an example program that tracks an indoor desk lamp (60 W in otherwise low light
conditions is recommended). It can be adjusted for outdoor sunlight tracking as well. Adjustments to the user-
defined constants will help the Solar Tracker reliably track. For day to day operation, the program will also
need some additional modifications. These are discussed in the Your Turn section.

Tracker_Control Subroutine

The next example program has both the horizontal and vertical decision making code nested in a subroutine
named Tracker_Control. The Main routine has to call this subroutine after it calls Get_Decay_Times so
that it has the latest measurements. Then, Tracker_Control examines the light measurements and sets the
motorPulse and pistionPulse variables accordingly. After that, the main routine can call the
Motor_Piston_Control subroutine which uses those two variables to control the motor and piston.

Tuning the User Defined Constants

There are five CON declarations below the User Defined Constants comment in the Constants Section. They
can be adjusted to change the way the Solar Tracker behaves.

' User Defined Constants

PULSE_CCW and PULSE_CW control how fast the motor turns when adjusting horizontal position. Numbers
further from 760 will make the motor turn faster, but they should stay in the range of 500 to 1000. It’s better
to make the motor adjust more slowly because the IDS II controller takes time to ramp up and back down.

PULSE_CCW CON 870 ' Counterclockwise motor speed
PULSE_CW CON 650 ' Clockwise motor speed

If you select a high speed, the platform might overshoot its target and decide it needs to turn back. When it
turns back, it might turn too far too if the speed are high, and this can lead to the platform oscillating back and
forth.

MAX_TIME is a sensor measurement that indicates that it’s too dark and not worth making a correction. This
number should probably be much smaller for outdoor use. It can be used to prevent the Solar Tracker from
getting confused by clouds and twilight. Take measurements when clouds pass and during sunset to determine
what the threshold should be.

MAX_TIME CON 30000 ' "Too dark" threshold

MAX_ERROR_H is a value that the program uses to decide if the difference between east and west light sensor
measurements is large enough to make it worth adjusting the Solar Tracker’s platform position. The average
of the two light sensors divided by the difference between the two has to be smaller than MAX_ERROR_H for a

 Chapter#3: Tracking with Sensors Page 35

platform position adjustment to be made. Larger values of MAX_ERROR_H make it more sensitive, smaller
values make it less sensitive.

MAX_ERROR_H CON 6 ' Horizontal error threshold

MAX_ERROR_V works the same way for the vertical platform tilt. Note that a small number is used because the
change in the platform tilt is pretty large. Since the adjustment is large, the value needs to be small (large
difference in up vs. down sensor) before it makes the adjustment.

MAX_ERROR_V CON 2 ' Vertical error threshold

Example Program: Track Indoor Lamp.bs2

This example program does a pretty good job of tracking a desk lamp. If you take it outdoors, you might
notice some erratic behavior. As mentioned earlier, if a cloud passes in frond of the sun, the Solar Tracker will
start attempting to adjust back and forth to find the light source. Most of this can be remedied by adjusting the
constants in the User Defined Constants section, but that’s going to be your job.

√ Run the program, and verify its functionality indoors with a 60 W desk lamp.
√ If you have a laptop, take the Solar Tracker outside and observe the sensor measurement values while

the Solar Tracker operates. You will need to make adjustments to get it to reliably adjust under full
sunlight conditions.

√ You will also need to modify the program to make it track sunlight from day to day. See the Your
Turn section that follows this example program for more information.

' Track Indoor Lamp.bs2
' Test light tracking control with an indoor lamp.

' {$STAMP BS2} ' Select BASIC Stamp 2 as target
' {$PBASIC 2.5} ' Use PBASIC 2.5 language

'-----[I/O Pin Definitions]---

PISTON PIN 15 ' Black header
MOTOR PIN 14 ' Red header

LED_TOP CON 11 ' Top LED light sensor circuit
LED_WEST CON 10 ' West LED light sensor circuit
LED_BOTTOM CON 9 ' Bottom LED light sensor circuit
LED_EAST CON 8 ' East LED light sensor circuit

SWITCH_WEST PIN 7 ' West limit switch
SWITCH_EAST PIN 6 ' East limit switch

'-----[Constants]---

' User defined constants

PULSE_CCW CON 870 ' Counterclockwise motor speed
PULSE_CW CON 650 ' Clockwise motor speed
MAX_TIME CON 30000 ' "Too dark" threshold
MAX_ERROR_H CON 6 ' Horizontal error threshold
MAX_ERROR_V CON 2 ' Vertical error threshold

' Other controller constants

PULSE_STOP CON 760 ' Stop motor signal
PISTON_PUSH CON 960 ' Push piston signal
PISTON_RELEASE CON 760 ' Release piston signal
PULSE_DELAY CON 20 ' 20 ms minimum between pulses

' Program constants

LIGHT_TOP CON 3 ' Top light measurement index

Page 36 Gears Solar Tracker with the BASIC Stamp

LIGHT_WEST CON 2 ' West light measurement index
LIGHT_BOTTOM CON 1 ' Bottom light measurement index
LIGHT_EAST CON 0 ' East light measurement index

'-----[Variables]---

motorPulse VAR Word ' Motor control pulse duration
pistonPulse VAR Word ' Piston control pulse duration
counter VAR Word ' Loop counter
average VAR Word ' Average measurement
error VAR Word ' Difference btwn measurements
time VAR Word(4) ' Light sensor array variables
index VAR Nib ' Indexing variable
pindex VAR index ' Pin index variable alias
x VAR Nib ' x cursor position for Debug
y VAR Nib ' y cursor position for Debug

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.

DEBUG CLS, " Light Levels", ' Display legend for measurements
 CRSRXY, 8, 3, "U", CRSRXY, 8, 5, "D",
 CRSRXY, 6, 4, "W", CRSRXY, 10, 4, "E"

'-----[Main]--

DO ' Repeat indefinitely (DO...LOOP)

 GOSUB Get_Decay_Times ' Get light sensor measurements
 GOSUB Display_Decay_Times ' Display measurements in Debug
 GOSUB Tracker_Control ' Decide what to do
 GOSUB Motor_Piston_Control ' Control motor and piston

LOOP

'-----[Subroutine Get_Decay_Times]--

Get_Decay_Times: ' Get light measurements

 FOR pindex = LED_EAST TO LED_TOP ' Loop through four sensors
 HIGH pindex ' Charge diode junction
 PAUSE 1 ' Wait 1 ms
 RCTIME pindex, 1, time(pindex - LED_EAST)' Time diode junction cap decay
 NEXT ' Repeat FOR...NEXT loop

 RETURN ' Return from subroutine

'-----[Subroutine Display_Decay_Times]--------------------------------------

Display_Decay_Times: ' Light sensor display subroutine

 FOR index = LIGHT_EAST TO LIGHT_TOP ' Loop through the 4 measurements
 LOOKUP index, [12, 6, 0, 6], x ' Set cursor-X position
 LOOKUP index, [4, 6, 4, 2], y ' Set cursor-Y position
 DEBUG CRSRXY, x, y, DEC5 time(index), CR ' Display indexed measurement
 NEXT ' Repeat the loop

 RETURN ' Return from subroutine

'-----[Subroutine Tracker_Control]--

' Set control variables based on sensor measurements.

Tracker_Control:

 ' East/West rotation
 ' If it’s light enough, divide difference between axis light measurements
 ' into average light for the axis. If the result is less than MAX_ERROR_H,
 ' tracker rotates platform to catch up with light source provided the limit
 ' switch for that direction is not pressed.

 Chapter#3: Tracking with Sensors Page 37

 IF time(LIGHT_WEST) < MAX_TIME AND time(LIGHT_EAST) < MAX_TIME THEN
 error = time(LIGHT_WEST) - time(LIGHT_EAST)
 average = time(LIGHT_EAST) + time(LIGHT_WEST) / 2
 IF average / ABS(error) < MAX_ERROR_H THEN
 IF time(LIGHT_WEST) > time(LIGHT_EAST) THEN
 IF SWITCH_WEST=1 THEN motorPulse=PULSE_CW ELSE motorPulse=PULSE_STOP
 ELSE
 IF SWITCH_EAST=1 THEN motorPulse=PULSE_CCW ELSE motorPulse=PULSE_STOP
 ENDIF
 ELSE
 motorPulse = PULSE_STOP
 ENDIF
 ELSE
 motorPulse = PULSE_STOP
 ENDIF

 ' Up/down adjustment
 ' If it’s light enough, divide difference between axis light measurements
 ' into average light for the axis. If the result is less than MAX_ERROR_V,
 ' tracker tilts platform to face the light source.

 IF time(LIGHT_TOP) < MAX_TIME AND time(LIGHT_BOTTOM) < MAX_TIME THEN
 error = time(LIGHT_TOP) - time(LIGHT_BOTTOM)
 average = time(LIGHT_TOP) + time(LIGHT_BOTTOM) / 2
 IF average / ABS(error) < MAX_ERROR_V THEN
 IF time(LIGHT_BOTTOM) > time(LIGHT_TOP) THEN
 pistonPulse = PISTON_PUSH
 ELSE
 pistonPulse = PISTON_RELEASE
 ENDIF
 ENDIF
 ENDIF

 RETURN

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Send pulses similar to standard hobby servo control signals to control the
' Solar Tracker’s motor and piston.
' Must call at least every 500 ms.

Motor_Piston_Control: ' Subroutine label

 PULSOUT MOTOR, motorPulse ' Send motor control pulse
 PULSOUT PISTON, pistonPulse ' Send piston control pulse
 PAUSE PULSE_DELAY ' Delay for at least PAUSE_DELAY

 RETURN ' Return from subroutine

'-----[Subroutine ST_Controller_Init]---------------------------------------

ST_Controller_Init: ' Initialize IDS II controller

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

 ' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on
 ' channels, pause antoher 1/10 s, then neutral pulses for ~ 2 s so that
 ' motor/valve controller gives BS2 control.

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 RETURN ' Return from subroutine

Page 38 Gears Solar Tracker with the BASIC Stamp

Your Turn – Day to Day Operation

Aside from the tuning for outdoor operation discussed earlier, this program needs some additional
modifications for day to day solar tracking. First, it needs to be able to get a rough idea of when the day has
begun and when it’s over. A couple of counting variables can be used for this purpose.

√ Add a command that adds 1 to the counter variable each time through the Main routine.
√ Test how long it takes to get to 500, and then calculate the time per loop repetition.

You can use a pair of counters to count an entire day if one counter variable that can go up to 65535 isn’t
enough. The code can watch one counter, and each time it gets to a value, it can add one to a second counter
and clears the first. When the program detects that the counter is getting close to the end of the day, it can
monitor the light levels. When the light levels indicate that the day is over, the code should make the Solar
Tracker turn back to face east. The counter can also count the approximate time a night takes so that it waits
until morning to start looking for bright light conditions.

You can prototype this in a room with a lamp. Guide the lamp over an emulated solar path over the course of a
minute, and then turn the lamp off for a minute. The Solar Tracker should return to facing east, and then wait
half a minute before it starts looking for light again. The difference between indoors and outdoors is that the
counters will have to count to much higher values, and the User Defined Constants will have to be adjusted for
brighter light conditions.

√ This is your project, good luck!

 Appendix A: Indoor Light Tracking App Summary Page 39

Appendix A: Indoor Light Tracking App Summary

PARTS LIST
(4) LEDs – Yellow
(6) Resistors – 10 kΩ (brown-black-orange)
(2) Limit switches (normally open)
(2) Resistors – 200 Ω (red-red-brown)
(1) PVC pipe, ¾” long X ½” diameter
(misc) jumper wires

(1) Desk lamp with 60 W incandescent bulb

SCHEMATIC – LIGHT DIRECTION SENSOR AND LIMIT SWITCH

Page 40 Gears Solar Tracker with the BASIC Stamp

RECOMMENDED WIRING
Keep in mind that the LED cathodes (pin closest to flat spot on bottom edge of plastic case) get connected to
the resistors, and the anodes get connected to ground (Vss). Make sure to trim the LED leads so that the
underside of the LED cases are pretty close to flush with the top of the breadboard. Leave about 1/8 “ extra for
wiggle room.

 Appendix A: Indoor Light Tracking App Summary Page 41

FINAL DIRECTION SENSOR
Tops of LEDs should be about 3/8” below the top of the PVC tube. Picture shows jumper wires holding the
pipe in place

SCHEMATIC – LIMIT SWITCHES

Page 42 Gears Solar Tracker with the BASIC Stamp

SOURCE CODE
' Track Indoor Lamp.bs2
' Test light tracking control with an indoor lamp.

' {$STAMP BS2} ' Select BASIC Stamp 2 as target
' {$PBASIC 2.5} ' Use PBASIC 2.5 language

'-----[I/O Pin Definitions]---

PISTON PIN 15 ' Black header
MOTOR PIN 14 ' Red header

LED_TOP CON 11 ' Top LED light sensor circuit
LED_WEST CON 10 ' West LED light sensor circuit
LED_BOTTOM CON 9 ' Bottom LED light sensor circuit
LED_EAST CON 8 ' East LED light sensor circuit

SWITCH_WEST PIN 7 ' West limit switch
SWITCH_EAST PIN 6 ' East limit switch

'-----[Constants]---

' User defined constants

PULSE_CCW CON 870 ' Counterclockwise motor speed
PULSE_CW CON 650 ' Clockwise motor speed
MAX_TIME CON 30000 ' "Too dark" threshold
MAX_ERROR_H CON 6 ' Horizontal error threshold
MAX_ERROR_V CON 2 ' Vertical error threshold

' Other controller constants

PULSE_STOP CON 760 ' Stop motor signal
PISTON_PUSH CON 960 ' Push piston signal
PISTON_RELEASE CON 760 ' Release piston signal
PULSE_DELAY CON 20 ' 20 ms minimum between pulses

' Program constants

LIGHT_TOP CON 3 ' Top light measurement index
LIGHT_WEST CON 2 ' West light measurement index
LIGHT_BOTTOM CON 1 ' Bottom light measurement index
LIGHT_EAST CON 0 ' East light measurement index

'-----[Variables]---

motorPulse VAR Word ' Motor control pulse duration
pistonPulse VAR Word ' Piston control pulse duration
counter VAR Word ' Loop counter
average VAR Word ' Average measurement
error VAR Word ' Difference btwn measurements
time VAR Word(4) ' Light sensor array variables
index VAR Nib ' Indexing variable
pindex VAR index ' Pin index variable alias
x VAR Nib ' x cursor position for Debug
y VAR Nib ' y cursor position for Debug

'-----[Initializataion]---

GOSUB ST_Controller_Init ' Required, takes ~ 4 s.

DEBUG CLS, " Light Levels", ' Display legend for measurements
 CRSRXY, 8, 3, "U", CRSRXY, 8, 5, "D",
 CRSRXY, 6, 4, "W", CRSRXY, 10, 4, "E"

'-----[Main]--

DO ' Repeat indefinitely (DO...LOOP)

 Appendix A: Indoor Light Tracking App Summary Page 43

 GOSUB Get_Decay_Times ' Get light sensor measurements
 GOSUB Display_Decay_Times ' Display measurements in Debug
 GOSUB Tracker_Control ' Decide what to do
 GOSUB Motor_Piston_Control ' Control motor and piston

LOOP

'-----[Subroutine Get_Decay_Times]--

Get_Decay_Times: ' Get light measurements

 FOR pindex = LED_EAST TO LED_TOP ' Loop through four sensors
 HIGH pindex ' Charge diode junction
 PAUSE 1 ' Wait 1 ms
 RCTIME pindex, 1, time(pindex - LED_EAST)' Time diode junction cap decay
 NEXT ' Repeat FOR...NEXT loop

 RETURN ' Return from subroutine

'-----[Subroutine Display_Decay_Times]--------------------------------------

Display_Decay_Times: ' Light sensor display subroutine

 FOR index = LIGHT_EAST TO LIGHT_TOP ' Loop through the 4 measurements
 LOOKUP index, [12, 6, 0, 6], x ' Set cursor-X position
 LOOKUP index, [4, 6, 4, 2], y ' Set cursor-Y position
 DEBUG CRSRXY, x, y, DEC5 time(index), CR ' Display indexed measurement
 NEXT ' Repeat the loop

 RETURN ' Return from subroutine

'-----[Subroutine Tracker_Control]--

' Set control variables based on sensor measurements.

Tracker_Control:

 ' East/West rotation
 ' If it’s light enough, divide difference between axis light measurements
 ' into average light for the axis. If the result is less than MAX_ERROR_H,
 ' tracker rotates platform to catch up with light source provided the limit
 ' switch for that direction is not pressed.

 IF time(LIGHT_WEST) < MAX_TIME AND time(LIGHT_EAST) < MAX_TIME THEN
 error = time(LIGHT_WEST) - time(LIGHT_EAST)
 average = time(LIGHT_EAST) + time(LIGHT_WEST) / 2
 IF average / ABS(error) < MAX_ERROR_H THEN
 IF time(LIGHT_WEST) > time(LIGHT_EAST) THEN
 IF SWITCH_WEST=1 THEN motorPulse=PULSE_CW ELSE motorPulse=PULSE_STOP
 ELSE
 IF SWITCH_EAST=1 THEN motorPulse=PULSE_CCW ELSE motorPulse=PULSE_STOP
 ENDIF
 ELSE
 motorPulse = PULSE_STOP
 ENDIF
 ELSE
 motorPulse = PULSE_STOP
 ENDIF

 ' Up/down adjustment
 ' If it’s light enough, divide difference between axis light measurements
 ' into average light for the axis. If the result is less than MAX_ERROR_V,
 ' tracker tilts platform to face the light source.

 IF time(LIGHT_TOP) < MAX_TIME AND time(LIGHT_BOTTOM) < MAX_TIME THEN
 error = time(LIGHT_TOP) - time(LIGHT_BOTTOM)
 average = time(LIGHT_TOP) + time(LIGHT_BOTTOM) / 2
 IF average / ABS(error) < MAX_ERROR_V THEN
 IF time(LIGHT_BOTTOM) > time(LIGHT_TOP) THEN
 pistonPulse = PISTON_PUSH
 ELSE

Page 44 Gears Solar Tracker with the BASIC Stamp

 pistonPulse = PISTON_RELEASE
 ENDIF
 ENDIF
 ENDIF

 RETURN

'-----[Subroutine Motor_Piston_Control]-------------------------------------

' Send pulses similar to standard hobby servo control signals to control the
' Solar Tracker’s motor and piston.
' Must call at least every 500 ms.

Motor_Piston_Control: ' Subroutine label

 PULSOUT MOTOR, motorPulse ' Send motor control pulse
 PULSOUT PISTON, pistonPulse ' Send piston control pulse
 PAUSE PULSE_DELAY ' Delay for at least PAUSE_DELAY

 RETURN ' Return from subroutine

'-----[Subroutine ST_Controller_Init]---------------------------------------

ST_Controller_Init: ' Initialize IDS II controller

 motorPulse = 760 ' Neutral pulse durations.
 pistonPulse = 760

 ' Pause 1/10 s, 100 neutral pulses for ~ 2 s to indicate activity on
 ' channels, pause antoher 1/10 s, then neutral pulses for ~ 2 s so that
 ' motor/valve controller gives BS2 control.

 FOR counter = 0 TO 199
 IF counter//100 = 0 THEN PAUSE 100
 GOSUB Motor_Piston_Control
 IF counter//50 = 0 THEN DEBUG "Initializing...", CR
 NEXT

 RETURN ' Return from subroutine

