

Work and Energy in Pneumatic Systems Using Pneumatic Systems to Perform Work and Power Mechanisms

The Concept of Work and Energy

Work and energy are equivalent expressions. Work is a term used by engineers to describe how energy is used or stored. Work and energy can be described mathematically as the product of force and distance.

Work = Force x Distance = **Energy**

There are several common units used to describe work and energy. These units are the combination of the units used to describe force and distance. These units are:

Foot Pounds = Distance (Feet) x Force (Pounds) **Inch Pounds** = Distance (Inches) x Force (Pounds)

Or <u>Newton Meters</u> = Force (Newtons) x Distance (Meters)

Example of Work 220 Pounds/ 1000 Newtons

A 220 pound man exerts a force of approximately 1000 Newtons downward. If that man climbs upward 3 flights of stairs, he elevates himself (*vertically*) 33 feet or approximately 10 meters. The expression on the following page describes the work produced;

Work = Force x Distance Work = 220 pounds x 33 ft. = 7260 ft. pounds or Work = 1000 Newtons x 33 meters = 33,000 Newton Meters

Work and Energy in Pneumatic Cylinders

Integrating knowledge and skills

Work Done by a Pneumatic Cylinder

Work is the product of force and distance. Pneumatic cylinders apply forces over distance equal to the piston stroke. It is a simple matter to calculate the average work done by a pneumatic cylinder each time it cycles through a stroke. The following example (Fig,2) explains how to make this calculation for the pneumatic cylinder pictured below. *Note:* $1 MPa = 1 \times 10^{6} Newton/m^{2}$

Cylinder Bore = 0.625" or 0.016 meter Stroke = 1" or 0.0254 meter Pressure = 100psi or .689 MPa

Procedure:

1.) Calculate the piston area

Area_{piston} =
$$\pi * r^2 = 0.307 \text{ in}^2 \text{ or } 0.0002 \text{m}^2$$

2.) Calculate the force on the piston

 $Force_{piston} = Area_{piston} * Pressure$

Force = 30.7 lbs f or 136.56 Newtons

3.) Calculate the cylinder work or energy output

Work = Force x Stroke

Work = 30.7 inch pounds or 3.468 Newton meters

Sample Problems

Directions: Using the procedure and formulas listed above calculate the work output for the cylinders described in the table below. *Hint: This exercise can be completed faster and with less effort if you take the time to create a spreadsheet solution to these problems.*

Cylinder SMC Part Number	Bore inch/metric	Stroke Inch/metric	Pressure Psi/MPa	Work Output Pounds f and Nm
NC Q8B 200-200S	2"	2"	75psi	
C J5F16SR-45	16mm	45mm	1MPa	
C M2 B40F-150	40mm	150mm	0.75MPa	
C S1B 300-1000JN	300mm	1000mm	1.5 MPa	
NC A1B400-1200	4"	12"	250psi	
NC J2F10-300	0.375"	3"	50psi	

Work and Energy in Pneumatic Systems Using the Pneumatic Test Module

The energy used to perform work in a pneumatic system is stored as pressurized air. The work done pumping and compressing the air creates pressure in the reservoir. The pressurized air in the reservoir is similar to a compressed spring. The pneumatic system you built for this lesson will be used to evaluate the work and energy capacities of a pneumatic system. *Note: If you have not yet built this pneumatic test module then click on the image below to open the instruction manual.*

Work Calculation (SI)

Work = Force * Distance = 17.79N * 0.0254m = 0.452Nm = 0.452Joules